BGE large Legal Spanish
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Language: es
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("dariolopez/bge-m3-es-legal-tmp-4")
sentences = [
'Artículo 6. Definiciones. 1. Discriminación directa e indirecta. b) La discriminación indirecta se produce cuando una disposición, criterio o práctica aparentemente neutros ocasiona o puede ocasionar a una o varias personas una desventaja particular con respecto a otras por razón de las causas previstas en el apartado 1 del artículo 2.',
'¿Qué se considera discriminación indirecta?',
'¿Qué tipo de información se considera veraz?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.5427 |
| cosine_accuracy@3 |
0.7988 |
| cosine_accuracy@5 |
0.8384 |
| cosine_accuracy@10 |
0.8872 |
| cosine_precision@1 |
0.5427 |
| cosine_precision@3 |
0.2663 |
| cosine_precision@5 |
0.1677 |
| cosine_precision@10 |
0.0887 |
| cosine_recall@1 |
0.5427 |
| cosine_recall@3 |
0.7988 |
| cosine_recall@5 |
0.8384 |
| cosine_recall@10 |
0.8872 |
| cosine_ndcg@10 |
0.7233 |
| cosine_mrr@10 |
0.6696 |
| cosine_map@100 |
0.6746 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.5396 |
| cosine_accuracy@3 |
0.8049 |
| cosine_accuracy@5 |
0.8445 |
| cosine_accuracy@10 |
0.8902 |
| cosine_precision@1 |
0.5396 |
| cosine_precision@3 |
0.2683 |
| cosine_precision@5 |
0.1689 |
| cosine_precision@10 |
0.089 |
| cosine_recall@1 |
0.5396 |
| cosine_recall@3 |
0.8049 |
| cosine_recall@5 |
0.8445 |
| cosine_recall@10 |
0.8902 |
| cosine_ndcg@10 |
0.7246 |
| cosine_mrr@10 |
0.6702 |
| cosine_map@100 |
0.6749 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.5488 |
| cosine_accuracy@3 |
0.8018 |
| cosine_accuracy@5 |
0.8354 |
| cosine_accuracy@10 |
0.8933 |
| cosine_precision@1 |
0.5488 |
| cosine_precision@3 |
0.2673 |
| cosine_precision@5 |
0.1671 |
| cosine_precision@10 |
0.0893 |
| cosine_recall@1 |
0.5488 |
| cosine_recall@3 |
0.8018 |
| cosine_recall@5 |
0.8354 |
| cosine_recall@10 |
0.8933 |
| cosine_ndcg@10 |
0.7304 |
| cosine_mrr@10 |
0.6771 |
| cosine_map@100 |
0.6811 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.5457 |
| cosine_accuracy@3 |
0.7774 |
| cosine_accuracy@5 |
0.8293 |
| cosine_accuracy@10 |
0.872 |
| cosine_precision@1 |
0.5457 |
| cosine_precision@3 |
0.2591 |
| cosine_precision@5 |
0.1659 |
| cosine_precision@10 |
0.0872 |
| cosine_recall@1 |
0.5457 |
| cosine_recall@3 |
0.7774 |
| cosine_recall@5 |
0.8293 |
| cosine_recall@10 |
0.872 |
| cosine_ndcg@10 |
0.7183 |
| cosine_mrr@10 |
0.6678 |
| cosine_map@100 |
0.6733 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.5335 |
| cosine_accuracy@3 |
0.7622 |
| cosine_accuracy@5 |
0.814 |
| cosine_accuracy@10 |
0.8659 |
| cosine_precision@1 |
0.5335 |
| cosine_precision@3 |
0.2541 |
| cosine_precision@5 |
0.1628 |
| cosine_precision@10 |
0.0866 |
| cosine_recall@1 |
0.5335 |
| cosine_recall@3 |
0.7622 |
| cosine_recall@5 |
0.814 |
| cosine_recall@10 |
0.8659 |
| cosine_ndcg@10 |
0.708 |
| cosine_mrr@10 |
0.6563 |
| cosine_map@100 |
0.6617 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.5122 |
| cosine_accuracy@3 |
0.7317 |
| cosine_accuracy@5 |
0.7896 |
| cosine_accuracy@10 |
0.8659 |
| cosine_precision@1 |
0.5122 |
| cosine_precision@3 |
0.2439 |
| cosine_precision@5 |
0.1579 |
| cosine_precision@10 |
0.0866 |
| cosine_recall@1 |
0.5122 |
| cosine_recall@3 |
0.7317 |
| cosine_recall@5 |
0.7896 |
| cosine_recall@10 |
0.8659 |
| cosine_ndcg@10 |
0.6908 |
| cosine_mrr@10 |
0.6347 |
| cosine_map@100 |
0.6394 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 16
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: True
tf32: True
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 16
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: True
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
dim_1024_cosine_map@100 |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
| 0.4324 |
5 |
1.6932 |
- |
- |
- |
- |
- |
- |
- |
| 0.8649 |
10 |
1.1787 |
- |
- |
- |
- |
- |
- |
- |
| 0.9514 |
11 |
- |
0.6685 |
0.6708 |
0.6300 |
0.6676 |
0.6716 |
0.5560 |
0.6781 |
| 1.2973 |
15 |
1.0084 |
- |
- |
- |
- |
- |
- |
- |
| 1.7297 |
20 |
0.5743 |
- |
- |
- |
- |
- |
- |
- |
| 1.9892 |
23 |
- |
0.4458 |
0.6734 |
0.6533 |
0.6773 |
0.6770 |
0.6174 |
0.6657 |
| 2.1622 |
25 |
0.4435 |
- |
- |
- |
- |
- |
- |
- |
| 2.5946 |
30 |
0.2396 |
- |
- |
- |
- |
- |
- |
- |
| 2.9405 |
34 |
- |
0.4239 |
0.6749 |
0.6591 |
0.6725 |
0.6752 |
0.6188 |
0.6784 |
| 3.0270 |
35 |
0.1568 |
- |
- |
- |
- |
- |
- |
- |
| 3.4595 |
40 |
0.1085 |
- |
- |
- |
- |
- |
- |
- |
| 3.8919 |
45 |
0.0582 |
- |
- |
- |
- |
- |
- |
- |
| 3.9784 |
46 |
- |
0.3934 |
0.6820 |
0.6594 |
0.6862 |
0.6856 |
0.6293 |
0.6777 |
| 4.3243 |
50 |
0.0543 |
- |
- |
- |
- |
- |
- |
- |
| 4.7568 |
55 |
0.0349 |
- |
- |
- |
- |
- |
- |
- |
| 4.9297 |
57 |
- |
0.3690 |
0.6747 |
0.6582 |
0.6760 |
0.6852 |
0.6375 |
0.6774 |
| 5.1892 |
60 |
0.03 |
- |
- |
- |
- |
- |
- |
- |
| 5.6216 |
65 |
0.0228 |
- |
- |
- |
- |
- |
- |
- |
| 5.9676 |
69 |
- |
0.362 |
0.6752 |
0.6643 |
0.6784 |
0.6809 |
0.6312 |
0.6799 |
| 6.0541 |
70 |
0.0183 |
- |
- |
- |
- |
- |
- |
- |
| 6.4865 |
75 |
0.0159 |
- |
- |
- |
- |
- |
- |
- |
| 6.9189 |
80 |
0.0113 |
0.3608 |
0.6780 |
0.6582 |
0.6769 |
0.6785 |
0.6366 |
0.6769 |
| 7.3514 |
85 |
0.0107 |
- |
- |
- |
- |
- |
- |
- |
| 7.7838 |
90 |
0.0098 |
- |
- |
- |
- |
- |
- |
- |
| 7.9568 |
92 |
- |
0.3307 |
0.6804 |
0.6511 |
0.6774 |
0.6823 |
0.6355 |
0.6747 |
| 8.2162 |
95 |
0.0084 |
- |
- |
- |
- |
- |
- |
- |
| 8.6486 |
100 |
0.0067 |
- |
- |
- |
- |
- |
- |
- |
| 8.9946 |
104 |
- |
0.3387 |
0.6778 |
0.6518 |
0.6751 |
0.6787 |
0.6313 |
0.6693 |
| 9.0811 |
105 |
0.0074 |
- |
- |
- |
- |
- |
- |
- |
| 9.5135 |
110 |
0.0064 |
- |
- |
- |
- |
- |
- |
- |
| 9.9459 |
115 |
0.0052 |
0.3222 |
0.6776 |
0.6571 |
0.6745 |
0.6810 |
0.6397 |
0.6722 |
| 10.3784 |
120 |
0.0058 |
- |
- |
- |
- |
- |
- |
- |
| 10.8108 |
125 |
0.0058 |
- |
- |
- |
- |
- |
- |
- |
| 10.9838 |
127 |
- |
0.3325 |
0.6760 |
0.6595 |
0.6714 |
0.6807 |
0.6399 |
0.6729 |
| 11.2432 |
130 |
0.0052 |
- |
- |
- |
- |
- |
- |
- |
| 11.6757 |
135 |
0.0046 |
- |
- |
- |
- |
- |
- |
- |
| 11.9351 |
138 |
- |
0.3366 |
0.6770 |
0.6598 |
0.6730 |
0.6813 |
0.6360 |
0.6733 |
| 12.1081 |
140 |
0.0053 |
- |
- |
- |
- |
- |
- |
- |
| 12.5405 |
145 |
0.0046 |
- |
- |
- |
- |
- |
- |
- |
| 12.9730 |
150 |
0.0045 |
0.3263 |
0.6759 |
0.6599 |
0.6743 |
0.6816 |
0.6394 |
0.6759 |
| 13.4054 |
155 |
0.0044 |
- |
- |
- |
- |
- |
- |
- |
| 13.8378 |
160 |
0.0043 |
- |
- |
- |
- |
- |
- |
- |
| 13.9243 |
161 |
- |
0.3231 |
0.6747 |
0.6593 |
0.6729 |
0.6804 |
0.6407 |
0.6746 |
| 14.2703 |
165 |
0.005 |
- |
- |
- |
- |
- |
- |
- |
| 14.7027 |
170 |
0.004 |
- |
- |
- |
- |
- |
- |
- |
| 14.9622 |
173 |
- |
0.3238 |
0.6743 |
0.6597 |
0.6720 |
0.6828 |
0.6395 |
0.6759 |
| 15.1351 |
175 |
0.005 |
- |
- |
- |
- |
- |
- |
- |
| 15.2216 |
176 |
- |
0.3244 |
0.6746 |
0.6617 |
0.6733 |
0.6811 |
0.6394 |
0.6749 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.2.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}