Dataset Viewer
Auto-converted to Parquet Duplicate
prompt
stringlengths
83
241k
completion
stringlengths
43
275k
source
stringclasses
3 values
Convert the following Python code into Triton code: import torch import torch.nn as nn class SumAggregator(nn.Module): def __init__(self): super(SumAggregator, self).__init__() def forward(self, neighbor): return torch.sum(neighbor, dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sum_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class SumAggregatorNew(nn.Module): def __init__(self): super(SumAggregatorNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import math import torch import torch.utils.data import torch.nn as nn class LinearEmbedding(nn.Module): def __init__(self, inp_size, d_model): super(LinearEmbedding, self).__init__() self.lut = nn.Linear(inp_size, d_model) self.d_model = d_model def forward(self, x): return self.lut(x) * math.sqrt(self.d_model) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inp_size': 4, 'd_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](buf1, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class LinearEmbeddingNew(nn.Module): def __init__(self, inp_size, d_model): super(LinearEmbeddingNew, self).__init__() self.lut = nn.Linear(inp_size, d_model) self.d_model = d_model def forward(self, input_0): primals_1 = self.lut.weight primals_2 = self.lut.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn class CustomizeLayer(nn.Module): def __init__(self, in_dim): super().__init__() self.in_dim = in_dim self.scale = nn.Parameter(torch.Tensor(self.in_dim)) self.bias = nn.Parameter(torch.Tensor(self.in_dim)) def forward(self, x): norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() x = torch.div(x, norm) return x * self.scale + self.bias def __repr__(self): return 'CustomizedLayer(in_dim=%d)' % self.in_dim def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x3 = xindex // 64 x5 = xindex % 16 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + (x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp0 / tmp12 tmp15 = tmp13 * tmp14 tmp17 = tmp15 + tmp16 tl.store(out_ptr0 + x4, tmp17, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sqrt_sum_0[grid(256)](primals_1, primals_2, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf0, primals_1 class CustomizeLayerNew(nn.Module): def __init__(self, in_dim): super().__init__() self.in_dim = in_dim self.scale = nn.Parameter(torch.Tensor(self.in_dim)) self.bias = nn.Parameter(torch.Tensor(self.in_dim)) def __repr__(self): return 'CustomizedLayer(in_dim=%d)' % self.in_dim def forward(self, input_0): primals_2 = self.scale primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn class LayerNorm(nn.Module): def __init__(self, weights, eps=1e-05): super().__init__() self.gamma = nn.Parameter(torch.ones(weights)) self.beta = nn.Parameter(torch.zeros(weights)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.gamma * (x - mean) / (std + self.eps) + self.beta def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'weights': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp13 = tmp2 - tmp10 tmp14 = tmp13 * tmp13 tmp15 = tmp3 - tmp10 tmp16 = tmp15 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tmp5 - tmp10 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp21 = tmp7 - tmp10 tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp24 = 3.0 tmp25 = tmp23 / tmp24 tmp26 = libdevice.sqrt(tmp25) tmp27 = 1e-05 tmp28 = tmp26 + tmp27 tmp29 = tmp12 / tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + x2, tmp31, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_mul_std_sub_0[grid(256)](primals_2, primals_1, primals_3, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf0, primals_1 class LayerNormNew(nn.Module): def __init__(self, weights, eps=1e-05): super().__init__() self.gamma = nn.Parameter(torch.ones(weights)) self.beta = nn.Parameter(torch.zeros(weights)) self.eps = eps def forward(self, input_0): primals_2 = self.gamma primals_3 = self.beta primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.utils.data import torch.nn as nn class LayerNorm(nn.Module): """ Construct a layernorm module (See citation for details). """ def __init__(self, features, eps=1e-06): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(dim=-1, keepdim=True) std = x.std(dim=-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp13 = tmp2 - tmp10 tmp14 = tmp13 * tmp13 tmp15 = tmp3 - tmp10 tmp16 = tmp15 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tmp5 - tmp10 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp21 = tmp7 - tmp10 tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp24 = 3.0 tmp25 = tmp23 / tmp24 tmp26 = libdevice.sqrt(tmp25) tmp27 = 1e-06 tmp28 = tmp26 + tmp27 tmp29 = tmp12 / tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + x2, tmp31, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_mul_std_sub_0[grid(256)](primals_2, primals_1, primals_3, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf0, primals_1 class LayerNormNew(nn.Module): """ Construct a layernorm module (See citation for details). """ def __init__(self, features, eps=1e-06): super(LayerNormNew, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, input_0): primals_2 = self.a_2 primals_3 = self.b_2 primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn class Norm(nn.Module): def __init__(self, n_state, axis=-1, epsilon=1e-05): super().__init__() self.n_state = n_state self.g = nn.Parameter(torch.ones([self.n_state])) self.b = nn.Parameter(torch.zeros([self.n_state])) self.axis = axis self.epsilon = epsilon def forward(self, x): u = torch.mean(x, dim=self.axis, keepdim=True) s = torch.mean(torch.square(x - u), dim=self.axis, keepdim=True) x = (x - u) * torch.rsqrt(s + self.epsilon) x = x * self.g + self.b return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_state': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mean_mul_pow_rsqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-05 tmp15 = tmp13 + tmp14 tmp16 = libdevice.rsqrt(tmp15) tmp17 = tmp0 * tmp16 tmp19 = tmp17 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + x2, tmp21, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_sub_0[grid(256)](primals_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mean_mul_pow_rsqrt_1[grid(256)](buf0, primals_2, primals_3, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 del primals_3 return buf1, primals_1 class NormNew(nn.Module): def __init__(self, n_state, axis=-1, epsilon=1e-05): super().__init__() self.n_state = n_state self.g = nn.Parameter(torch.ones([self.n_state])) self.b = nn.Parameter(torch.zeros([self.n_state])) self.axis = axis self.epsilon = epsilon def forward(self, input_0): primals_2 = self.g primals_3 = self.b primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch from torch import nn as nn class BehlerAngular(nn.Module): """ Compute Behler type angular contribution of the angle spanned by three atoms: :math:`2^{(1-\\zeta)} (1 + \\lambda \\cos( {\\theta}_{ijk} ) )^\\zeta` Sets of zetas with lambdas of -1 and +1 are generated automatically. Args: zetas (set of int): Set of exponents used to compute angular Behler term (default={1}) """ def __init__(self, zetas={1}): super(BehlerAngular, self).__init__() self.zetas = zetas def forward(self, cos_theta): """ Args: cos_theta (torch.Tensor): Cosines between all pairs of neighbors of the central atom. Returns: torch.Tensor: Tensor containing values of the angular filters. """ angular_pos = [(2 ** (1 - zeta) * ((1.0 - cos_theta) ** zeta). unsqueeze(-1)) for zeta in self.zetas] angular_neg = [(2 ** (1 - zeta) * ((1.0 + cos_theta) ** zeta). unsqueeze(-1)) for zeta in self.zetas] angular_all = angular_pos + angular_neg return torch.cat(angular_all, -1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = 1.0 tmp7 = tmp6 - tmp5 tmp8 = tmp7 * tmp6 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tl.full([1], 2, tl.int64) tmp14 = tl.load(in_ptr0 + x1, tmp11 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tmp14 + tmp6 tmp16 = tmp15 * tmp6 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp11, tmp16, tmp17) tmp19 = tl.where(tmp4, tmp10, tmp18) tl.store(out_ptr0 + x2, tmp19, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 2), (128, 32, 8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](arg0_1, buf0, 512, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class BehlerAngularNew(nn.Module): """ Compute Behler type angular contribution of the angle spanned by three atoms: :math:`2^{(1-\\zeta)} (1 + \\lambda \\cos( {\\theta}_{ijk} ) )^\\zeta` Sets of zetas with lambdas of -1 and +1 are generated automatically. Args: zetas (set of int): Set of exponents used to compute angular Behler term (default={1}) """ def __init__(self, zetas={1}): super(BehlerAngularNew, self).__init__() self.zetas = zetas def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import math import torch import torch.nn as nn import torch.utils.data import torch.nn.parallel import torch.optim import torch.utils.data.distributed def init_layer(L): if isinstance(L, nn.Conv2d): n = L.kernel_size[0] * L.kernel_size[1] * L.out_channels L.weight.data.normal_(0, math.sqrt(2.0 / float(n))) elif isinstance(L, nn.BatchNorm2d): L.weight.data.fill_(1) L.bias.data.fill_(0) class BottleneckBlock(nn.Module): def __init__(self, indim, outdim, half_res): super(BottleneckBlock, self).__init__() bottleneckdim = int(outdim / 4) self.indim = indim self.outdim = outdim self.C1 = nn.Conv2d(indim, bottleneckdim, kernel_size=1, bias=False) self.BN1 = nn.Identity() self.C2 = nn.Conv2d(bottleneckdim, bottleneckdim, kernel_size=3, stride=2 if half_res else 1, padding=1) self.BN2 = nn.Identity() self.C3 = nn.Conv2d(bottleneckdim, outdim, kernel_size=1, bias=False) self.BN3 = nn.Identity() self.relu = nn.ReLU() self.parametrized_layers = [self.C1, self.BN1, self.C2, self.BN2, self.C3, self.BN3] self.half_res = half_res if indim != outdim: self.shortcut = nn.Conv2d(indim, outdim, 1, stride=2 if half_res else 1, bias=False) self.parametrized_layers.append(self.shortcut) self.shortcut_type = '1x1' else: self.shortcut_type = 'identity' for layer in self.parametrized_layers: init_layer(layer) def forward(self, x): short_out = x if self.shortcut_type == 'identity' else self.shortcut(x) out = self.C1(x) out = self.BN1(out) out = self.relu(out) out = self.C2(out) out = self.BN2(out) out = self.relu(out) out = self.C3(out) out = self.BN3(out) out = out + short_out out = self.relu(out) return out def get_inputs(): return [torch.rand([4, 4, 2, 2])] def get_init_inputs(): return [[], {'indim': 4, 'outdim': 4, 'half_res': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import math import torch.nn as nn import torch.utils.data import torch.nn.parallel import torch.optim import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_add_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 2, 2), (16, 4, 2, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (4, 1, 1, 1), (1, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 2, 2), (4, 4, 2, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(16)](buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_3, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(4)](buf3, primals_4, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_4 buf4 = extern_kernels.convolution(buf3, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf6 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool) triton_poi_fused_add_relu_threshold_backward_2[grid(64)](buf4, primals_1, buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf4 return buf5, primals_1, primals_2, primals_3, primals_5, buf1, buf3, buf6 def init_layer(L): if isinstance(L, nn.Conv2d): n = L.kernel_size[0] * L.kernel_size[1] * L.out_channels L.weight.data.normal_(0, math.sqrt(2.0 / float(n))) elif isinstance(L, nn.BatchNorm2d): L.weight.data.fill_(1) L.bias.data.fill_(0) class BottleneckBlockNew(nn.Module): def __init__(self, indim, outdim, half_res): super(BottleneckBlockNew, self).__init__() bottleneckdim = int(outdim / 4) self.indim = indim self.outdim = outdim self.C1 = nn.Conv2d(indim, bottleneckdim, kernel_size=1, bias=False) self.BN1 = nn.Identity() self.C2 = nn.Conv2d(bottleneckdim, bottleneckdim, kernel_size=3, stride=2 if half_res else 1, padding=1) self.BN2 = nn.Identity() self.C3 = nn.Conv2d(bottleneckdim, outdim, kernel_size=1, bias=False) self.BN3 = nn.Identity() self.relu = nn.ReLU() self.parametrized_layers = [self.C1, self.BN1, self.C2, self.BN2, self.C3, self.BN3] self.half_res = half_res if indim != outdim: self.shortcut = nn.Conv2d(indim, outdim, 1, stride=2 if half_res else 1, bias=False) self.parametrized_layers.append(self.shortcut) self.shortcut_type = '1x1' else: self.shortcut_type = 'identity' for layer in self.parametrized_layers: init_layer(layer) def forward(self, input_0): primals_2 = self.C1.weight primals_3 = self.C2.weight primals_4 = self.C2.bias primals_5 = self.C3.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn class Conv1d(nn.Module): def __init__(self, nf, nx, stdev=0.02): super().__init__() self.nf = nf self.nx = nx self.stdev = stdev self.w = nn.Parameter(torch.normal(size=[1, self.nx, self.nf], mean =0.0, std=self.stdev)) self.b = nn.Parameter(torch.zeros([self.nf])) def forward(self, x: 'torch.Tensor'): shape = x.size() start, nx = shape[:-1], shape[-1] return torch.reshape(torch.matmul(torch.reshape(x, [-1, nx]), torch .reshape(self.w, [-1, self.nf])) + self.b, start + (self.nf,)) class Mlp(nn.Module): def __init__(self, input_dim, proj_dim): super().__init__() self.input_dim = input_dim self.proj_dim = proj_dim self.conv_fc = Conv1d(self.proj_dim, self.input_dim) self.conv_proj = Conv1d(self.input_dim, self.proj_dim) def forward(self, x): h = nn.functional.gelu(self.conv_fc(x)) return self.conv_proj(h) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'proj_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_gelu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (4, 1), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_gelu_0[grid(256)](buf0, primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_3, buf0, reinterpret_tensor(buf1, (4, 64), (1, 4), 0 ), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0) class Conv1d(nn.Module): def __init__(self, nf, nx, stdev=0.02): super().__init__() self.nf = nf self.nx = nx self.stdev = stdev self.w = nn.Parameter(torch.normal(size=[1, self.nx, self.nf], mean =0.0, std=self.stdev)) self.b = nn.Parameter(torch.zeros([self.nf])) def forward(self, x: 'torch.Tensor'): shape = x.size() start, nx = shape[:-1], shape[-1] return torch.reshape(torch.matmul(torch.reshape(x, [-1, nx]), torch .reshape(self.w, [-1, self.nf])) + self.b, start + (self.nf,)) class MlpNew(nn.Module): def __init__(self, input_dim, proj_dim): super().__init__() self.input_dim = input_dim self.proj_dim = proj_dim self.conv_fc = Conv1d(self.proj_dim, self.input_dim) self.conv_proj = Conv1d(self.input_dim, self.proj_dim) def forward(self, input_0): primals_2 = self.conv_fc.w primals_3 = self.conv_fc.b primals_4 = self.conv_proj.w primals_5 = self.conv_proj.b primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Kernelbook
Convert the following Python code into Triton code: from torch.nn import Module import math import torch import torch.nn.functional as F import torch.nn as nn class GraphConvolution(Module): """ A Graph Convolution Layer (GCN) """ def __init__(self, in_features, out_features, bias=True): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.W = nn.Linear(in_features, out_features, bias=bias) self.init() def init(self): stdv = 1.0 / math.sqrt(self.W.weight.size(1)) self.W.weight.data.uniform_(-stdv, stdv) def forward(self, input, adj): support = self.W(input) output = torch.spmm(adj, support) return output class GCN(nn.Module): """ A Two-layer GCN. """ def __init__(self, nfeat, nhid, nclass, dropout): super(GCN, self).__init__() self.gc1 = GraphConvolution(nfeat, nhid) self.gc2 = GraphConvolution(nhid, nclass) self.dropout = dropout self.elu = torch.nn.ELU(inplace=True) def forward(self, x, adj, use_relu=True): x = self.gc1(x, adj) if use_relu: x = self.elu(x) x = F.dropout(x, self.dropout, training=self.training) x = self.gc2(x, adj) return x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'nfeat': 4, 'nhid': 4, 'nclass': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_elu_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(in_out_ptr0 + x0, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor( primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_4, buf0, out=buf1) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_elu_0[grid(16)](buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = buf0 del buf0 extern_kernels.addmm(primals_6, buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_4, buf3, out=buf4) del buf3 return buf4, primals_3, buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), primals_5 class GraphConvolution(Module): """ A Graph Convolution Layer (GCN) """ def __init__(self, in_features, out_features, bias=True): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.W = nn.Linear(in_features, out_features, bias=bias) self.init() def init(self): stdv = 1.0 / math.sqrt(self.W.weight.size(1)) self.W.weight.data.uniform_(-stdv, stdv) def forward(self, input, adj): support = self.W(input) output = torch.spmm(adj, support) return output class GCNNew(nn.Module): """ A Two-layer GCN. """ def __init__(self, nfeat, nhid, nclass, dropout): super(GCNNew, self).__init__() self.gc1 = GraphConvolution(nfeat, nhid) self.gc2 = GraphConvolution(nhid, nclass) self.dropout = dropout self.elu = torch.nn.ELU(inplace=True) def forward(self, input_0, input_1): primals_1 = self.gc1.W.weight primals_2 = self.gc1.W.bias primals_3 = self.gc2.W.weight primals_6 = self.gc2.W.bias primals_4 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import math import torch import torch.nn as nn import torch.utils.data import torch.nn.parallel import torch.optim import torch.utils.data.distributed def init_layer(L): if isinstance(L, nn.Conv2d): n = L.kernel_size[0] * L.kernel_size[1] * L.out_channels L.weight.data.normal_(0, math.sqrt(2.0 / float(n))) elif isinstance(L, nn.BatchNorm2d): L.weight.data.fill_(1) L.bias.data.fill_(0) class SimpleBlock(nn.Module): maml = False def __init__(self, indim, outdim, half_res): super(SimpleBlock, self).__init__() self.indim = indim self.outdim = outdim self.C1 = nn.Conv2d(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False) self.BN1 = nn.Identity() self.C2 = nn.Conv2d(outdim, outdim, kernel_size=3, padding=1, bias= False) self.BN2 = nn.Identity() self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) self.parametrized_layers = [self.C1, self.C2, self.BN1, self.BN2] self.half_res = half_res if indim != outdim: self.shortcut = nn.Conv2d(indim, outdim, 1, 2 if half_res else 1, bias=False) self.BNshortcut = nn.Identity() self.parametrized_layers.append(self.shortcut) self.parametrized_layers.append(self.BNshortcut) self.shortcut_type = '1x1' else: self.shortcut_type = 'identity' for layer in self.parametrized_layers: init_layer(layer) def forward(self, x): out = self.C1(x) out = self.BN1(out) out = self.relu1(out) out = self.C2(out) out = self.BN2(out) short_out = x if self.shortcut_type == 'identity' else self.BNshortcut( self.shortcut(x)) out = out + short_out out = self.relu2(out) return out def get_inputs(): return [torch.rand([4, 4, 2, 2])] def get_init_inputs(): return [[], {'indim': 4, 'outdim': 4, 'half_res': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import math import torch.nn as nn import torch.utils.data import torch.nn.parallel import torch.optim import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, 4, 2, 2), (16, 4, 2, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(16)](buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool) triton_poi_fused_add_relu_threshold_backward_1[grid(64)](buf2, primals_2, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf2 return buf3, primals_1, primals_2, primals_3, buf1, buf4 def init_layer(L): if isinstance(L, nn.Conv2d): n = L.kernel_size[0] * L.kernel_size[1] * L.out_channels L.weight.data.normal_(0, math.sqrt(2.0 / float(n))) elif isinstance(L, nn.BatchNorm2d): L.weight.data.fill_(1) L.bias.data.fill_(0) class SimpleBlockNew(nn.Module): maml = False def __init__(self, indim, outdim, half_res): super(SimpleBlockNew, self).__init__() self.indim = indim self.outdim = outdim self.C1 = nn.Conv2d(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False) self.BN1 = nn.Identity() self.C2 = nn.Conv2d(outdim, outdim, kernel_size=3, padding=1, bias= False) self.BN2 = nn.Identity() self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) self.parametrized_layers = [self.C1, self.C2, self.BN1, self.BN2] self.half_res = half_res if indim != outdim: self.shortcut = nn.Conv2d(indim, outdim, 1, 2 if half_res else 1, bias=False) self.BNshortcut = nn.Identity() self.parametrized_layers.append(self.shortcut) self.parametrized_layers.append(self.BNshortcut) self.shortcut_type = '1x1' else: self.shortcut_type = 'identity' for layer in self.parametrized_layers: init_layer(layer) def forward(self, input_0): primals_1 = self.C1.weight primals_3 = self.C2.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch from torch import nn as nn class Aggregate(nn.Module): """Pooling layer based on sum or average with optional masking. Args: axis (int): axis along which pooling is done. mean (bool, optional): if True, use average instead for sum pooling. keepdim (bool, optional): whether the output tensor has dim retained or not. """ def __init__(self, axis, mean=False, keepdim=True): super(Aggregate, self).__init__() self.average = mean self.axis = axis self.keepdim = keepdim def forward(self, input, mask=None): """Compute layer output. Args: input (torch.Tensor): input data. mask (torch.Tensor, optional): mask to be applied; e.g. neighbors mask. Returns: torch.Tensor: layer output. """ if mask is not None: input = input * mask[..., None] y = torch.sum(input, self.axis) if self.average: if mask is not None: N = torch.sum(mask, self.axis, keepdim=self.keepdim) N = torch.max(N, other=torch.ones_like(N)) else: N = input.size(self.axis) y = y / N return y def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'axis': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sum_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class AggregateNew(nn.Module): """Pooling layer based on sum or average with optional masking. Args: axis (int): axis along which pooling is done. mean (bool, optional): if True, use average instead for sum pooling. keepdim (bool, optional): whether the output tensor has dim retained or not. """ def __init__(self, axis, mean=False, keepdim=True): super(AggregateNew, self).__init__() self.average = mean self.axis = axis self.keepdim = keepdim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch from torch import Tensor from torch import nn class KaggleAccuracy(nn.Module): def __init__(self, threshold: 'float'=0.25, num_patches: 'int'=38, size: 'int'=418) ->None: super().__init__() self.threshold = threshold self.num_patches = num_patches self.patch_size = size // num_patches self.resize = nn.Upsample(size=size) self.unfold = nn.Unfold(kernel_size=self.patch_size, stride=self. patch_size) def forward(self, x: 'Tensor', y: 'Tensor') ->Tensor: x = self.to_patch_value(x) y = self.to_patch_value(y) acc = torch.mean((x == y).float()) return acc def to_patch_value(self, x: 'Tensor') ->Tensor: x = x.float() x = self.resize(x) x = self.unfold(x) x = x.mean(dim=1) return (x > self.threshold).float() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import Tensor from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_red_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr, RBLOCK: tl.constexpr): xnumel = 5776 rnumel = 484 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 1444 x1 = xindex // 1444 _tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = 11 * (x0 // 38) + r2 // 11 % 11 tmp1 = tmp0.to(tl.float32) tmp2 = 0.009569377990430622 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = 11 * (x0 % 38) + r2 % 11 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * (r2 // 121) + 64 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = _tmp11 + tmp10 _tmp11 = tl.where(rmask & xmask, tmp12, _tmp11) tmp11 = tl.sum(_tmp11, 1)[:, None] tl.store(out_ptr0 + (x0 + 1472 * x1), tmp11, xmask) @triton.jit def triton_red_fused__to_copy_eq_gt_mean_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): rnumel = 5776 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] _tmp13 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r0 = rindex % 1444 r1 = rindex // 1444 tmp0 = tl.load(in_ptr0 + (r0 + 1472 * r1), rmask, eviction_policy= 'evict_first', other=0.0) tmp6 = tl.load(in_ptr1 + (r0 + 1472 * r1), rmask, eviction_policy= 'evict_first', other=0.0) tmp1 = 484.0 tmp2 = tmp0 / tmp1 tmp3 = 0.25 tmp4 = tmp2 > tmp3 tmp5 = tmp4.to(tl.float32) tmp7 = tmp6 / tmp1 tmp8 = tmp7 > tmp3 tmp9 = tmp8.to(tl.float32) tmp10 = tmp5 == tmp9 tmp11 = tmp10.to(tl.float32) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = _tmp13 + tmp12 _tmp13 = tl.where(rmask, tmp14, _tmp13) tmp13 = tl.sum(_tmp13, 1)[:, None] tmp15 = 5776.0 tmp16 = tmp13 / tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1444), (1472, 1), torch.float32) get_raw_stream(0) triton_red_fused_mean_0[grid(5776)](arg0_1, buf0, 5776, 484, XBLOCK =64, RBLOCK=64, num_warps=16, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 1444), (1472, 1), torch.float32) triton_red_fused_mean_0[grid(5776)](arg1_1, buf1, 5776, 484, XBLOCK =64, RBLOCK=64, num_warps=16, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 triton_red_fused__to_copy_eq_gt_mean_1[grid(1)](buf3, buf0, buf1, 1, 5776, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) del buf0 del buf1 return buf3, class KaggleAccuracyNew(nn.Module): def __init__(self, threshold: 'float'=0.25, num_patches: 'int'=38, size: 'int'=418) ->None: super().__init__() self.threshold = threshold self.num_patches = num_patches self.patch_size = size // num_patches self.resize = nn.Upsample(size=size) self.unfold = nn.Unfold(kernel_size=self.patch_size, stride=self. patch_size) def to_patch_value(self, x: 'Tensor') ->Tensor: x = x.float() x = self.resize(x) x = self.unfold(x) x = x.mean(dim=1) return (x > self.threshold).float() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Parameter class ConstAttention(nn.Module): def __init__(self, **kwargs): super(ConstAttention, self).__init__() def forward(self, neighbor_vecs, self_vecs): return 1 class GatAttention(ConstAttention): def __init__(self, num_heads, out_channels): super(GatAttention, self).__init__() self.num_heads = num_heads self.out_channels = out_channels self.att_self_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.att_neighbor_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.reset_parameters() def reset_parameters(self): pass def forward(self, neighbor_vecs, self_vecs): alpha = (self_vecs * self.att_self_weight).sum(dim=-1) + (neighbor_vecs * self.att_neighbor_weight).sum(dim=-1) alpha = F.leaky_relu(alpha, negative_slope=0.2) return alpha class CosAttention(GatAttention): def forward(self, neighbor_vecs, self_vecs): alpha = (neighbor_vecs * self.att_neighbor_weight * self_vecs * self.att_self_weight) alpha = alpha.sum(dim=-1) return alpha def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_heads': 4, 'out_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.functional as F import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + 4 * x2, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + 4 * x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (1 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr3 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr2 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr3 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp24 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp26 = tl.load(in_ptr2 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp28 = tl.load(in_ptr3 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp9 = tmp7 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 * tmp12 tmp14 = tmp6 + tmp13 tmp17 = tmp15 * tmp16 tmp19 = tmp17 * tmp18 tmp21 = tmp19 * tmp20 tmp22 = tmp14 + tmp21 tmp25 = tmp23 * tmp24 tmp27 = tmp25 * tmp26 tmp29 = tmp27 * tmp28 tmp30 = tmp22 + tmp29 tl.store(out_ptr0 + x2, tmp30, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sum_0[grid(64)](primals_2, primals_1, primals_3, primals_4, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf0, primals_1, primals_2, primals_3, primals_4 class ConstAttention(nn.Module): def __init__(self, **kwargs): super(ConstAttention, self).__init__() def forward(self, neighbor_vecs, self_vecs): return 1 class GatAttention(ConstAttention): def __init__(self, num_heads, out_channels): super(GatAttention, self).__init__() self.num_heads = num_heads self.out_channels = out_channels self.att_self_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.att_neighbor_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.reset_parameters() def reset_parameters(self): pass def forward(self, neighbor_vecs, self_vecs): alpha = (self_vecs * self.att_self_weight).sum(dim=-1) + (neighbor_vecs * self.att_neighbor_weight).sum(dim=-1) alpha = F.leaky_relu(alpha, negative_slope=0.2) return alpha class CosAttentionNew(GatAttention): def forward(self, input_0, input_1): primals_1 = self.att_self_weight primals_4 = self.att_neighbor_weight primals_2 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn import torch.nn.functional as F class FullyConnectedNet(nn.Module): """https://github.com/VainF/Torch-Pruning/issues/21""" def __init__(self, input_size, num_classes, HIDDEN_UNITS): super().__init__() self.fc1 = nn.Linear(input_size, HIDDEN_UNITS) self.fc2 = nn.Linear(HIDDEN_UNITS, num_classes) def forward(self, x): x = F.relu(self.fc1(x)) y_hat = self.fc2(x) return y_hat def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'num_classes': 4, 'HIDDEN_UNITS': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf3 class FullyConnectedNetNew(nn.Module): """https://github.com/VainF/Torch-Pruning/issues/21""" def __init__(self, input_size, num_classes, HIDDEN_UNITS): super().__init__() self.fc1 = nn.Linear(input_size, HIDDEN_UNITS) self.fc2 = nn.Linear(HIDDEN_UNITS, num_classes) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Parameter class ConstAttention(nn.Module): def __init__(self, **kwargs): super(ConstAttention, self).__init__() def forward(self, neighbor_vecs, self_vecs): return 1 class GatAttention(ConstAttention): def __init__(self, num_heads, out_channels): super(GatAttention, self).__init__() self.num_heads = num_heads self.out_channels = out_channels self.att_self_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.att_neighbor_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.reset_parameters() def reset_parameters(self): pass def forward(self, neighbor_vecs, self_vecs): alpha = (self_vecs * self.att_self_weight).sum(dim=-1) + (neighbor_vecs * self.att_neighbor_weight).sum(dim=-1) alpha = F.leaky_relu(alpha, negative_slope=0.2) return alpha def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_heads': 4, 'out_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_leaky_relu_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr2 + 4 * x2, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr3 + 4 * x0, xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr2 + (1 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr3 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr2 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_ptr3 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp26 = tl.load(in_ptr2 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp27 = tl.load(in_ptr3 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp17 = tmp15 * tmp16 tmp20 = tmp18 * tmp19 tmp21 = tmp17 + tmp20 tmp24 = tmp22 * tmp23 tmp25 = tmp21 + tmp24 tmp28 = tmp26 * tmp27 tmp29 = tmp25 + tmp28 tmp30 = tmp14 + tmp29 tmp31 = 0.0 tmp32 = tmp30 > tmp31 tmp33 = 0.2 tmp34 = tmp30 * tmp33 tmp35 = tl.where(tmp32, tmp30, tmp34) tl.store(out_ptr1 + x2, tmp32, xmask) tl.store(out_ptr2 + x2, tmp35, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_leaky_relu_mul_sum_0[grid(64)](primals_2, primals_1, primals_4, primals_3, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 del primals_3 return buf2, primals_2, primals_4, buf1 class ConstAttention(nn.Module): def __init__(self, **kwargs): super(ConstAttention, self).__init__() def forward(self, neighbor_vecs, self_vecs): return 1 class GatAttentionNew(ConstAttention): def __init__(self, num_heads, out_channels): super(GatAttentionNew, self).__init__() self.num_heads = num_heads self.out_channels = out_channels self.att_self_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.att_neighbor_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.reset_parameters() def reset_parameters(self): pass def forward(self, input_0, input_1): primals_1 = self.att_self_weight primals_3 = self.att_neighbor_weight primals_2 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn class TripletLoss(nn.Module): def __init__(self): super(TripletLoss, self).__init__() self.margin = 0.5 def distance(self, x, y): diff = torch.abs(x - y) diff = torch.pow(diff, 2).sum(-1) return diff def forward(self, anchor, pos, neg): pos_distance = self.distance(anchor, pos) neg_distance = self.distance(anchor, neg) loss = torch.clamp(self.margin + pos_distance - neg_distance, min=0.0 ).mean() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_clamp_mean_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last') tmp29 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tmp3 * tmp3 tmp7 = tmp5 - tmp6 tmp8 = tl_math.abs(tmp7) tmp9 = tmp8 * tmp8 tmp10 = tmp4 + tmp9 tmp13 = tmp11 - tmp12 tmp14 = tl_math.abs(tmp13) tmp15 = tmp14 * tmp14 tmp16 = tmp10 + tmp15 tmp19 = tmp17 - tmp18 tmp20 = tl_math.abs(tmp19) tmp21 = tmp20 * tmp20 tmp22 = tmp16 + tmp21 tmp23 = 0.5 tmp24 = tmp22 + tmp23 tmp26 = tmp0 - tmp25 tmp27 = tl_math.abs(tmp26) tmp28 = tmp27 * tmp27 tmp30 = tmp5 - tmp29 tmp31 = tl_math.abs(tmp30) tmp32 = tmp31 * tmp31 tmp33 = tmp28 + tmp32 tmp35 = tmp11 - tmp34 tmp36 = tl_math.abs(tmp35) tmp37 = tmp36 * tmp36 tmp38 = tmp33 + tmp37 tmp40 = tmp17 - tmp39 tmp41 = tl_math.abs(tmp40) tmp42 = tmp41 * tmp41 tmp43 = tmp38 + tmp42 tmp44 = tmp24 - tmp43 tmp45 = 0.0 tmp46 = triton_helpers.maximum(tmp44, tmp45) tmp47 = tl.broadcast_to(tmp46, [XBLOCK, RBLOCK]) tmp49 = tl.sum(tmp47, 1)[:, None] tmp50 = 64.0 tmp51 = tmp49 / tmp50 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp51, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_abs_add_clamp_mean_pow_sub_sum_0[grid(1)](buf2, arg0_1, arg1_1, arg2_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class TripletLossNew(nn.Module): def __init__(self): super(TripletLossNew, self).__init__() self.margin = 0.5 def distance(self, x, y): diff = torch.abs(x - y) diff = torch.pow(diff, 2).sum(-1) return diff def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Parameter class ConstAttention(nn.Module): def __init__(self, **kwargs): super(ConstAttention, self).__init__() def forward(self, neighbor_vecs, self_vecs): return 1 class GatAttention(ConstAttention): def __init__(self, num_heads, out_channels): super(GatAttention, self).__init__() self.num_heads = num_heads self.out_channels = out_channels self.att_self_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.att_neighbor_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.reset_parameters() def reset_parameters(self): pass def forward(self, neighbor_vecs, self_vecs): alpha = (self_vecs * self.att_self_weight).sum(dim=-1) + (neighbor_vecs * self.att_neighbor_weight).sum(dim=-1) alpha = F.leaky_relu(alpha, negative_slope=0.2) return alpha class GatSymAttention(GatAttention): def forward(self, neighbor_vecs, self_vecs): alpha = (self_vecs * self.att_self_weight).sum(dim=-1) + (neighbor_vecs * self.att_neighbor_weight).sum(dim=-1) alpha = F.leaky_relu(alpha, negative_slope=0.2) alpha_2 = (neighbor_vecs * self.att_self_weight).sum(dim=-1) + ( self_vecs * self.att_neighbor_weight).sum(dim=-1) alpha = alpha + alpha_2 return alpha def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_heads': 4, 'out_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.functional as F import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_leaky_relu_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr2 + 4 * x2, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr3 + 4 * x0, xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr2 + (1 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr3 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr2 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_ptr3 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp26 = tl.load(in_ptr2 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp27 = tl.load(in_ptr3 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp17 = tmp15 * tmp16 tmp20 = tmp18 * tmp19 tmp21 = tmp17 + tmp20 tmp24 = tmp22 * tmp23 tmp25 = tmp21 + tmp24 tmp28 = tmp26 * tmp27 tmp29 = tmp25 + tmp28 tmp30 = tmp14 + tmp29 tmp31 = tmp15 * tmp1 tmp32 = tmp18 * tmp4 tmp33 = tmp31 + tmp32 tmp34 = tmp22 * tmp8 tmp35 = tmp33 + tmp34 tmp36 = tmp26 * tmp12 tmp37 = tmp35 + tmp36 tmp38 = tmp0 * tmp16 tmp39 = tmp3 * tmp19 tmp40 = tmp38 + tmp39 tmp41 = tmp7 * tmp23 tmp42 = tmp40 + tmp41 tmp43 = tmp11 * tmp27 tmp44 = tmp42 + tmp43 tmp45 = tmp37 + tmp44 tmp46 = 0.0 tmp47 = tmp30 > tmp46 tmp48 = 0.2 tmp49 = tmp30 * tmp48 tmp50 = tl.where(tmp47, tmp30, tmp49) tmp51 = tmp50 + tmp45 tl.store(out_ptr1 + x2, tmp47, xmask) tl.store(in_out_ptr0 + x2, tmp51, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) buf3 = buf2 del buf2 get_raw_stream(0) triton_poi_fused_add_leaky_relu_mul_sum_0[grid(64)](buf3, primals_2, primals_1, primals_4, primals_3, buf1, 64, XBLOCK=64, num_warps =1, num_stages=1) del primals_1 del primals_3 return buf3, primals_2, primals_4, buf1 class ConstAttention(nn.Module): def __init__(self, **kwargs): super(ConstAttention, self).__init__() def forward(self, neighbor_vecs, self_vecs): return 1 class GatAttention(ConstAttention): def __init__(self, num_heads, out_channels): super(GatAttention, self).__init__() self.num_heads = num_heads self.out_channels = out_channels self.att_self_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.att_neighbor_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.reset_parameters() def reset_parameters(self): pass def forward(self, neighbor_vecs, self_vecs): alpha = (self_vecs * self.att_self_weight).sum(dim=-1) + (neighbor_vecs * self.att_neighbor_weight).sum(dim=-1) alpha = F.leaky_relu(alpha, negative_slope=0.2) return alpha class GatSymAttentionNew(GatAttention): def forward(self, input_0, input_1): primals_1 = self.att_self_weight primals_3 = self.att_neighbor_weight primals_2 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn import torch.utils.data class HuberLoss(nn.Module): def __init__(self, delta=1): super().__init__() self.huber_loss_delta1 = nn.SmoothL1Loss() self.delta = delta def forward(self, x, x_hat): loss = self.huber_loss_delta1(x / self.delta, x_hat / self.delta) return loss * self.delta * self.delta def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_mul_smooth_l1_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp5 = tmp2 - tmp4 tmp6 = tl_math.abs(tmp5) tmp7 = tmp6 < tmp1 tmp8 = tmp6 * tmp6 tmp9 = 0.5 tmp10 = tmp8 * tmp9 tmp11 = tmp10 * tmp1 tmp12 = tmp6 - tmp9 tmp13 = tl.where(tmp7, tmp11, tmp12) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tmp19 = tmp18 * tmp1 tmp20 = tmp19 * tmp1 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_mul_smooth_l1_loss_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class HuberLossNew(nn.Module): def __init__(self, delta=1): super().__init__() self.huber_loss_delta1 = nn.SmoothL1Loss() self.delta = delta def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn.functional as F import torch.nn as nn class ScaledDotProductAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): """ q: 256,8,36,64 k: 256,8,36,64 v: 256,8,36,64 mask: 256,1,1,36 """ attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) """ mask(256,1,1,36) attn(256,8,36,36) 这里用到了tensor的broadcast: 两个tensor必须满足,从最后一个维度开始往前算,维度要么相等,要么为1,要么不存在 这里的mask中间两个维度为1,可以与attn做broadcast 将mask的行索引复制到36,得到36×36的mask矩阵,batch中共256个36*36的矩阵,1/256即batch中每个样本的mask再复制到head=8个 每个batch中样本的mask和各自的互注意力矩阵相乘 注意力矩阵是36*36是个混淆矩阵,表示第一个元素和其余36个元素的关系,因此mask行列转置无所谓 """ if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'temperature': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.25 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg1_1, (16, 4, 4), (16, 1, 4), 0), out=buf1 ) del arg1_1 buf2 = buf0 del buf0 triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused__softmax_2[grid(256)](buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf4 ) del arg2_1 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf3 class ScaledDotProductAttentionNew(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn from torch.nn.parameter import Parameter from torch.nn import init class ScalarScaleBias(nn.Module): def __init__(self, scale=True, scale_init=1.0, bias=True, bias_init=0.0 ) ->None: super(ScalarScaleBias, self).__init__() if scale: self.weight = Parameter(torch.Tensor(1)) else: self.register_parameter('weight', None) if bias: self.bias = Parameter(torch.Tensor(1)) else: self.register_parameter('bias', None) self.weight_init = scale_init self.bias_init = bias_init self.reset_parameters() def reset_parameters(self) ->None: if self.weight is not None: init.constant_(self.weight, self.weight_init) if self.bias is not None: init.constant_(self.bias, self.bias_init) def forward(self, x): if self.weight is not None: x = x * self.weight if self.bias is not None: x = x + self.bias return x class ScalarBiasScale(ScalarScaleBias): def forward(self, x): if self.bias is not None: x = x + self.bias if self.weight is not None: x = x * self.weight return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.nn.parameter import Parameter from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp6 = tmp3 * tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](primals_2, primals_1, primals_3, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf0, primals_1, primals_2, primals_3 class ScalarScaleBias(nn.Module): def __init__(self, scale=True, scale_init=1.0, bias=True, bias_init=0.0 ) ->None: super(ScalarScaleBias, self).__init__() if scale: self.weight = Parameter(torch.Tensor(1)) else: self.register_parameter('weight', None) if bias: self.bias = Parameter(torch.Tensor(1)) else: self.register_parameter('bias', None) self.weight_init = scale_init self.bias_init = bias_init self.reset_parameters() def reset_parameters(self) ->None: if self.weight is not None: init.constant_(self.weight, self.weight_init) if self.bias is not None: init.constant_(self.bias, self.bias_init) def forward(self, x): if self.weight is not None: x = x * self.weight if self.bias is not None: x = x + self.bias return x class ScalarBiasScaleNew(ScalarScaleBias): def forward(self, input_0): primals_1 = self.weight primals_3 = self.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn class MeanStd(nn.Module): def __init__(self): super(MeanStd, self).__init__() def forward(self, x): x = x.view(x.size(0), x.size(1), -1) mean_x = torch.mean(x, dim=2) var_x = torch.mean(x ** 2, dim=2) - mean_x * mean_x return torch.cat([mean_x, var_x], dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_mul_pow_sub_0(in_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = 16.0 tmp11 = tmp9 / tmp10 tmp12 = tmp5 / tmp10 tmp13 = tmp11 * tmp11 tmp14 = tmp12 - tmp13 tl.store(out_ptr2 + (x2 + 8 * x3), tmp11, xmask) tl.store(out_ptr3 + (x2 + 8 * x3), tmp14, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf2 = reinterpret_tensor(buf4, (4, 4), (8, 1), 0) buf3 = reinterpret_tensor(buf4, (4, 4), (8, 1), 4) get_raw_stream(0) triton_per_fused_mean_mul_pow_sub_0[grid(16)](arg0_1, buf2, buf3, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf4, class MeanStdNew(nn.Module): def __init__(self): super(MeanStdNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn from math import sqrt as sqrt from itertools import product as product import torch.nn.init as init class L2Norm(nn.Module): def __init__(self, n_channels, scale): super(L2Norm, self).__init__() self.n_channels = n_channels self.gamma = scale or None self.eps = 1e-10 self.weight = nn.Parameter(torch.Tensor(self.n_channels)) self.reset_parameters() def reset_parameters(self): init.constant_(self.weight, self.gamma) def forward(self, x): norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps x = torch.div(x, norm) out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x ) * x return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_channels': 4, 'scale': 1.0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from math import sqrt as sqrt from itertools import product as product import torch.nn.init as init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = libdevice.sqrt(tmp12) tmp14 = 1e-10 tmp15 = tmp13 + tmp14 tmp16 = tmp1 / tmp15 tmp17 = tmp0 * tmp16 tl.store(out_ptr0 + x3, tmp17, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sqrt_sum_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf0, primals_1 class L2NormNew(nn.Module): def __init__(self, n_channels, scale): super(L2NormNew, self).__init__() self.n_channels = n_channels self.gamma = scale or None self.eps = 1e-10 self.weight = nn.Parameter(torch.Tensor(self.n_channels)) self.reset_parameters() def reset_parameters(self): init.constant_(self.weight, self.gamma) def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn.functional as F import torch.nn as nn class PositionwiseFeedForward(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.layer_norm = nn.LayerNorm(d_in, eps=1e-06) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_in': 4, 'd_hid': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-06 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_3, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused_add_native_layer_norm_1[grid(64)](buf2, primals_1, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_2[grid(256)](buf2, primals_1, buf3, buf4, primals_6, primals_7, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 del buf4 del primals_7 return buf5, primals_1, primals_6, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf2, primals_4, buf6 class PositionwiseFeedForwardNew(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.layer_norm = nn.LayerNorm(d_in, eps=1e-06) self.dropout = nn.Dropout(dropout) def forward(self, input_0): primals_2 = self.w_1.weight primals_3 = self.w_1.bias primals_4 = self.w_2.weight primals_5 = self.w_2.bias primals_6 = self.layer_norm.weight primals_7 = self.layer_norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn class NormalizationLayer(nn.Module): def __init__(self): super(NormalizationLayer, self).__init__() def forward(self, x, epsilon=1e-08): return x * ((x ** 2).mean(dim=1, keepdim=True) + epsilon).rsqrt() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mean_mul_pow_rsqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.rsqrt(tmp15) tmp17 = tmp0 * tmp16 tl.store(out_ptr0 + x3, tmp17, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mean_mul_pow_rsqrt_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class NormalizationLayerNew(nn.Module): def __init__(self): super(NormalizationLayerNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn class Decoder(nn.Module): def __init__(self, z_dim): super(Decoder, self).__init__() self.deconv1 = nn.ConvTranspose2d(z_dim, 128, kernel_size=4, stride =1, bias=False) self.deconv2 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False) self.deconv3 = nn.ConvTranspose2d(64, 1, kernel_size=4, stride=2, padding=1, bias=False) self.lrelu = nn.LeakyReLU() def forward(self, x): x = self.deconv1(x) x = self.lrelu(x) x = self.deconv2(x) x = self.lrelu(x) x = self.deconv3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'z_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 25088 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.01 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.01 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_4, (64, 1, 4, 4), (16, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 128, 7, 7), (6272, 49, 7, 1)) buf1 = empty_strided_cuda((4, 128, 7, 7), (6272, 49, 7, 1), torch.bool) buf2 = empty_strided_cuda((4, 128, 7, 7), (6272, 49, 7, 1), torch. float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(25088)](buf0, buf1, buf2, 25088, XBLOCK=128, num_warps=4, num_stages=1) del buf0 buf3 = extern_kernels.convolution(buf2, primals_3, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 64, 14, 14), (12544, 196, 14, 1)) buf4 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.bool) buf5 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.float32) triton_poi_fused_leaky_relu_1[grid(50176)](buf3, buf4, buf5, 50176, XBLOCK=512, num_warps=4, num_stages=1) del buf3 buf6 = extern_kernels.convolution(buf5, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 1, 28, 28), (784, 784, 28, 1)) return (buf6, primals_1, primals_2, primals_3, primals_4, buf1, buf2, buf4, buf5) class DecoderNew(nn.Module): def __init__(self, z_dim): super(DecoderNew, self).__init__() self.deconv1 = nn.ConvTranspose2d(z_dim, 128, kernel_size=4, stride =1, bias=False) self.deconv2 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False) self.deconv3 = nn.ConvTranspose2d(64, 1, kernel_size=4, stride=2, padding=1, bias=False) self.lrelu = nn.LeakyReLU() def forward(self, input_0): primals_1 = self.deconv1.weight primals_3 = self.deconv2.weight primals_4 = self.deconv3.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn import torch.utils.data class LayerNorm(nn.Module): """ Simple 1D LayerNorm. """ def __init__(self, features, center=True, scale=False, eps=1e-06): super().__init__() self.center = center self.scale = scale self.eps = eps if self.scale: self.scale_param = nn.Parameter(torch.ones(features)) else: self.scale_param = None if self.center: self.center_param = nn.Parameter(torch.zeros(features)) else: self.center_param = None def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) output = (x - mean) / (std + self.eps) if self.scale: output = output * self.scale_param if self.center: output = output + self.center_param return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_std_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = 3.0 tmp23 = tmp21 / tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 1e-06 tmp26 = tmp24 + tmp25 tmp27 = tmp10 / tmp26 tmp29 = tmp27 + tmp28 tl.store(out_ptr0 + x2, tmp29, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_std_sub_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, class LayerNormNew(nn.Module): """ Simple 1D LayerNorm. """ def __init__(self, features, center=True, scale=False, eps=1e-06): super().__init__() self.center = center self.scale = scale self.eps = eps if self.scale: self.scale_param = nn.Parameter(torch.ones(features)) else: self.scale_param = None if self.center: self.center_param = nn.Parameter(torch.zeros(features)) else: self.center_param = None def forward(self, input_0): primals_2 = self.center_param primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as nn class MaskedMSELoss(nn.Module): def __init__(self): super(MaskedMSELoss, self).__init__() self.loss = nn.MSELoss(reduction='sum') def forward(self, pred, target, mask): """ pred -> batch*seq_len target -> batch*seq_len mask -> batch*seq_len """ loss = self.loss(pred * mask, target) / torch.sum(mask) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_mse_loss_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp3 = tl.load(in_ptr2 + r0, None) tmp2 = tmp0 * tmp1 tmp4 = tmp2 - tmp3 tmp5 = tmp4 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = tmp8 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_mse_loss_mul_sum_0[grid(1)](buf2, arg0_1, arg1_1, arg2_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class MaskedMSELossNew(nn.Module): def __init__(self): super(MaskedMSELossNew, self).__init__() self.loss = nn.MSELoss(reduction='sum') def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch from torch import nn import torch.nn.functional as F import torch.utils.data class SimpleMLP(nn.Module): def __init__(self, n_inputs, n_outputs, dropout_probability): super(SimpleMLP, self).__init__() self.n_inputs = n_inputs self.n_outputs = n_outputs self.dropout_probability = dropout_probability self.l1 = nn.Linear(self.n_inputs, self.n_inputs * 2) self.l2 = nn.Linear(self.n_inputs * 2, self.n_inputs * 4) self.l3 = nn.Linear(self.n_inputs * 4, self.n_inputs * 8) self.l4 = nn.Linear(self.n_inputs * 8, self.n_outputs) self.dropout = nn.Dropout(self.dropout_probability) def forward(self, X): X = F.relu(self.l1(X)) X = self.dropout(X) X = F.relu(self.l2(X)) X = self.dropout(X) X = F.relu(self.l3(X)) X = self.dropout(X) X = self.l4(X) return X def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_inputs': 4, 'n_outputs': 4, 'dropout_probability': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 8), (8, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (32, 16), (16, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (4, 32), (32, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0) del buf0 buf9 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(512)](buf1, primals_2, buf9, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 16), (1, 8), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0) del buf2 buf8 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(1024)](buf3, primals_5, buf8, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 32), (1, 16), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 32), (512, 128, 32, 1), 0) del buf4 buf7 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(2048)](buf5, primals_7, buf7, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 32), (32, 1), 0), reinterpret_tensor(primals_8, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf6) del primals_9 return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor( buf3, (64, 16), (16, 1), 0), reinterpret_tensor(buf5, (64, 32), (32, 1), 0), primals_8, buf7, primals_6, buf8, primals_4, buf9 class SimpleMLPNew(nn.Module): def __init__(self, n_inputs, n_outputs, dropout_probability): super(SimpleMLPNew, self).__init__() self.n_inputs = n_inputs self.n_outputs = n_outputs self.dropout_probability = dropout_probability self.l1 = nn.Linear(self.n_inputs, self.n_inputs * 2) self.l2 = nn.Linear(self.n_inputs * 2, self.n_inputs * 4) self.l3 = nn.Linear(self.n_inputs * 4, self.n_inputs * 8) self.l4 = nn.Linear(self.n_inputs * 8, self.n_outputs) self.dropout = nn.Dropout(self.dropout_probability) def forward(self, input_0): primals_1 = self.l1.weight primals_2 = self.l1.bias primals_4 = self.l2.weight primals_5 = self.l2.bias primals_6 = self.l3.weight primals_7 = self.l3.bias primals_8 = self.l4.weight primals_9 = self.l4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn.functional as F import torch.nn as nn class ScaledDotProductAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): """ q: 256,8,36,64 k: 256,8,36,64 v: 256,8,36,64 mask: 256,1,1,36 """ attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) """ mask(256,1,1,36) attn(256,8,36,36) 这里用到了tensor的broadcast: 两个tensor必须满足,从最后一个维度开始往前算,维度要么相等,要么为1,要么不存在 这里的mask中间两个维度为1,可以与attn做broadcast 将mask的行索引复制到36,得到36×36的mask矩阵,batch中共256个36*36的矩阵,1/256即batch中每个样本的mask再复制到head=8个 每个batch中样本的mask和各自的互注意力矩阵相乘 注意力矩阵是36*36是个混淆矩阵,表示第一个元素和其余36个元素的关系,因此mask行列转置无所谓 """ if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn class MultiHeadAttention(nn.Module): """ Multi-Head Attention module """ def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) q, attn = self.attention(q, k, v, mask=mask) q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) q += residual q = self.layer_norm(q) return q, attn def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'n_head': 4, 'd_model': 4, 'd_k': 4, 'd_v': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn.functional as F import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-06 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (16, 4), (4, 1)) assert_size_stride(primals_6, (16, 4), (4, 1)) assert_size_stride(primals_7, (4, 16), (16, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf0) del primals_4 buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf1) del primals_5 buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_div_0[grid(256)](buf0, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused_clone_1[grid(64, 4)](buf1, buf4, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) buf8 = buf6 del buf6 triton_poi_fused_clone_4[grid(256)](buf2, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_4[grid(256)](buf9, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf9 buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf10, (16, 16), (16, 1), 0), reinterpret_tensor(primals_7, (16, 4), (1, 16), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(16)](buf11, primals_1, buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(64)](buf11, primals_1, buf12, buf13, primals_8, primals_9, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf12 del buf13 del primals_9 return buf14, buf7, primals_1, primals_8, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf10, (16, 16), (16, 1), 0 ), buf11, primals_7, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0) class ScaledDotProductAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): """ q: 256,8,36,64 k: 256,8,36,64 v: 256,8,36,64 mask: 256,1,1,36 """ attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) """ mask(256,1,1,36) attn(256,8,36,36) 这里用到了tensor的broadcast: 两个tensor必须满足,从最后一个维度开始往前算,维度要么相等,要么为1,要么不存在 这里的mask中间两个维度为1,可以与attn做broadcast 将mask的行索引复制到36,得到36×36的mask矩阵,batch中共256个36*36的矩阵,1/256即batch中每个样本的mask再复制到head=8个 每个batch中样本的mask和各自的互注意力矩阵相乘 注意力矩阵是36*36是个混淆矩阵,表示第一个元素和其余36个元素的关系,因此mask行列转置无所谓 """ if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn class MultiHeadAttentionNew(nn.Module): """ Multi-Head Attention module """ def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) def forward(self, input_0, input_1, input_2): primals_4 = self.w_qs.weight primals_5 = self.w_ks.weight primals_6 = self.w_vs.weight primals_7 = self.fc.weight primals_8 = self.layer_norm.weight primals_9 = self.layer_norm.bias primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn as tnn class Net(tnn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = tnn.Conv2d(3, 6, 5) self.pool = tnn.MaxPool2d(2, 2) self.conv2 = tnn.Conv2d(6, 16, 5) self.fc1 = tnn.Linear(16 * 5 * 5, 120) self.fc2 = tnn.Linear(120, 84) self.fc3 = tnn.Linear(84, 10) def forward(self, x): x = self.pool(self.conv1(x)) x = self.pool(self.conv2(x)) x = x.view(-1, 16 * 5 * 5) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as tnn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 784 % 6 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = xindex // 14 x2 = xindex // 1176 x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + 1184 * x2), tmp6, xmask) tl.store(out_ptr1 + (x4 + 1280 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 100 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6,), (1,)) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (120, 400), (400, 1)) assert_size_stride(primals_7, (120,), (1,)) assert_size_stride(primals_8, (84, 120), (120, 1)) assert_size_stride(primals_9, (84,), (1,)) assert_size_stride(primals_10, (10, 84), (84, 1)) assert_size_stride(primals_11, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(18816)](buf1, primals_2, 18816, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch .float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_1[grid(4704)](buf1, buf2, buf3, 4704, XBLOCK=128, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(6400)](buf5, primals_5, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32 ) triton_poi_fused_max_pool2d_with_indices_3[grid(1600)](buf5, buf6, buf7, 1600, XBLOCK=256, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400 ), 0), alpha=1, beta=1, out=buf8) del primals_7 buf9 = empty_strided_cuda((4, 84), (84, 1), torch.float32) extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), alpha=1, beta=1, out=buf9) del primals_9 buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_11, buf9, reinterpret_tensor( primals_10, (84, 10), (1, 84), 0), alpha=1, beta=1, out=buf10) del primals_11 return (buf10, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf8, buf9, primals_10, primals_8, primals_6) class NetNew(tnn.Module): def __init__(self): super(NetNew, self).__init__() self.conv1 = tnn.Conv2d(3, 6, 5) self.pool = tnn.MaxPool2d(2, 2) self.conv2 = tnn.Conv2d(6, 16, 5) self.fc1 = tnn.Linear(16 * 5 * 5, 120) self.fc2 = tnn.Linear(120, 84) self.fc3 = tnn.Linear(84, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
Kernelbook
Convert the following Python code into Triton code: import torch import torch.nn.functional as F import torch.nn as nn class ScaledDotProductAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): """ q: 256,8,36,64 k: 256,8,36,64 v: 256,8,36,64 mask: 256,1,1,36 """ attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) """ mask(256,1,1,36) attn(256,8,36,36) 这里用到了tensor的broadcast: 两个tensor必须满足,从最后一个维度开始往前算,维度要么相等,要么为1,要么不存在 这里的mask中间两个维度为1,可以与attn做broadcast 将mask的行索引复制到36,得到36×36的mask矩阵,batch中共256个36*36的矩阵,1/256即batch中每个样本的mask再复制到head=8个 每个batch中样本的mask和各自的互注意力矩阵相乘 注意力矩阵是36*36是个混淆矩阵,表示第一个元素和其余36个元素的关系,因此mask行列转置无所谓 """ if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn class MultiHeadAttention(nn.Module): """ Multi-Head Attention module """ def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) q, attn = self.attention(q, k, v, mask=mask) q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) q += residual q = self.layer_norm(q) return q, attn class PositionwiseFeedForward(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.layer_norm = nn.LayerNorm(d_in, eps=1e-06) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x class EncoderLayer(nn.Module): """ Compose with two layers """ def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1): super(EncoderLayer, self).__init__() self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout= dropout) def forward(self, enc_input, slf_attn_mask=None): enc_output, enc_slf_attn = self.slf_attn(enc_input, enc_input, enc_input, mask=slf_attn_mask) enc_output = self.pos_ffn(enc_output) return enc_output, enc_slf_attn def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'd_inner': 4, 'n_head': 4, 'd_k': 4, 'd_v': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn.functional as F import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-06 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-06 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) assert_size_stride(primals_3, (16, 4), (4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (4, 16), (16, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_div_0[grid(256)](buf0, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused_clone_1[grid(64, 4)](buf1, buf4, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) buf8 = buf6 del buf6 triton_poi_fused_clone_4[grid(256)](buf2, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_4[grid(256)](buf9, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf9 buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf10, (16, 16), (16, 1), 0), reinterpret_tensor(primals_5, (16, 4), (1, 16), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(16)](buf11, primals_1, buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(64)](buf11, primals_1, buf12, buf13, primals_6, primals_7, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_7 buf15 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf15) buf16 = reinterpret_tensor(buf15, (4, 4, 4), (16, 4, 1), 0) del buf15 buf22 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_7[grid(64)](buf16, primals_9, buf22, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf16, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf17) buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0) del buf17 triton_poi_fused_add_8[grid(64)](buf18, primals_11, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_11 buf19 = buf13 del buf13 buf20 = buf12 del buf12 triton_poi_fused_native_layer_norm_9[grid(16)](buf18, buf19, buf20, 16, XBLOCK=16, num_warps=1, num_stages=1) buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_10[grid(64)](buf18, buf19, buf20, primals_12, primals_13, buf21, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf19 del buf20 del primals_13 return (buf21, buf7, primals_1, primals_6, primals_12, buf7, reinterpret_tensor(buf10, (16, 16), (16, 1), 0), buf11, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor( buf16, (16, 4), (4, 1), 0), buf18, primals_10, buf22, primals_8, primals_5, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0)) class ScaledDotProductAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): """ q: 256,8,36,64 k: 256,8,36,64 v: 256,8,36,64 mask: 256,1,1,36 """ attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) """ mask(256,1,1,36) attn(256,8,36,36) 这里用到了tensor的broadcast: 两个tensor必须满足,从最后一个维度开始往前算,维度要么相等,要么为1,要么不存在 这里的mask中间两个维度为1,可以与attn做broadcast 将mask的行索引复制到36,得到36×36的mask矩阵,batch中共256个36*36的矩阵,1/256即batch中每个样本的mask再复制到head=8个 每个batch中样本的mask和各自的互注意力矩阵相乘 注意力矩阵是36*36是个混淆矩阵,表示第一个元素和其余36个元素的关系,因此mask行列转置无所谓 """ if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn class MultiHeadAttention(nn.Module): """ Multi-Head Attention module """ def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) q, attn = self.attention(q, k, v, mask=mask) q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) q += residual q = self.layer_norm(q) return q, attn class PositionwiseFeedForward(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.layer_norm = nn.LayerNorm(d_in, eps=1e-06) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x class EncoderLayerNew(nn.Module): """ Compose with two layers """ def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1): super(EncoderLayerNew, self).__init__() self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout= dropout) def forward(self, input_0): primals_2 = self.slf_attn.w_qs.weight primals_3 = self.slf_attn.w_ks.weight primals_4 = self.slf_attn.w_vs.weight primals_5 = self.slf_attn.fc.weight primals_6 = self.slf_attn.layer_norm.weight primals_7 = self.slf_attn.layer_norm.bias primals_8 = self.pos_ffn.w_1.weight primals_9 = self.pos_ffn.w_1.bias primals_10 = self.pos_ffn.w_2.weight primals_11 = self.pos_ffn.w_2.bias primals_12 = self.pos_ffn.layer_norm.weight primals_13 = self.pos_ffn.layer_norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0], output[1]
Kernelbook
Convert the following Python code into Triton code: import torch from torch import nn class MishAutoFn(torch.autograd.Function): """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 Experimental memory-efficient variant """ @staticmethod def forward(ctx, x): ctx.save_for_backward(x) y = x.mul(torch.tanh(nn.Softplus()(x))) return y @staticmethod def backward(ctx, grad_output): x = ctx.saved_tensors[0] x_sigmoid = torch.sigmoid(x) x_tanh_sp = nn.Softplus()(x).tanh() return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp)) class Mish(nn.Module): def __init__(self, inplace: 'bool'=False): super(Mish, self).__init__() self.inplace = inplace def forward(self, x): return MishAutoFn.apply(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_softplus_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = 20.0 tmp4 = tmp2 > tmp3 tmp5 = tl_math.exp(tmp2) tmp6 = libdevice.log1p(tmp5) tmp7 = tmp6 * tmp1 tmp8 = tl.where(tmp4, tmp0, tmp7) tmp9 = libdevice.tanh(tmp8) tmp10 = tmp0 * tmp9 tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_softplus_tanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class MishAutoFn(torch.autograd.Function): """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 Experimental memory-efficient variant """ @staticmethod def forward(ctx, x): ctx.save_for_backward(x) y = x.mul(torch.tanh(nn.Softplus()(x))) return y @staticmethod def backward(ctx, grad_output): x = ctx.saved_tensors[0] x_sigmoid = torch.sigmoid(x) x_tanh_sp = nn.Softplus()(x).tanh() return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp)) class MishNew(nn.Module): def __init__(self, inplace: 'bool'=False): super(MishNew, self).__init__() self.inplace = inplace def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Kernelbook
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
12