|
|
--- |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- math |
|
|
- reasoning |
|
|
- dynamic-analysis |
|
|
- bode-plot |
|
|
- llm-evaluation |
|
|
- systems-of-linear-equations |
|
|
pretty_name: "MathBode-LinearSystem" |
|
|
size_categories: |
|
|
- "1K<n<10K" |
|
|
--- |
|
|
|
|
|
# MathBode-LinearSystem: Systems of Linear Equations Domain |
|
|
|
|
|
Linear system solving problems from the MathBode benchmark. |
|
|
|
|
|
This dataset is part of the **MathBode** benchmark, which evaluates the dynamic reasoning capabilities of large language models (LLMs) by treating parametric math problems as dynamic systems. Instead of testing static accuracy on fixed problems, MathBode sinusoidally varies a parameter and measures the model's response in terms of **gain** (amplitude tracking) and **phase** (reasoning lag), analogous to a Bode plot in control theory. |
|
|
|
|
|
## About This Domain |
|
|
|
|
|
This dataset contains **Systems of Linear Equations** problems specifically, with approximately 9,408 prompts covering: |
|
|
|
|
|
- **3 question variants** with different constants |
|
|
- **Sinusoidal parameter sweeps** at 5 frequencies (1, 2, 4, 8, 16 cycles) |
|
|
- **3 phase offsets** (0°, 120°, 240°) for statistical robustness |
|
|
- **3 amplitude scales** (0.5x, 1.0x, 2.5x) for non-linearity testing |
|
|
- **Chirp signal validation** with continuous frequency sweeps |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
| Column | Description | |
|
|
|--------|-------------| |
|
|
| `family` | Problem family name (always `linear_system` for this dataset) | |
|
|
| `question_id` | Question variant ID (0, 1, or 2) | |
|
|
| `signal_type` | Type of parameter variation (`sinusoid` or `chirp`) | |
|
|
| `amplitude_scale` | Scaling factor for parameter variation amplitude | |
|
|
| `frequency_cycles` | Frequency of parameter variation in cycles per sweep | |
|
|
| `phase_deg` | Starting phase of sinusoidal signal in degrees | |
|
|
| `time_step` | Step index within the sweep | |
|
|
| `p_value` | The dynamic parameter value for this time step | |
|
|
| `prompt` | The complete prompt text for the model | |
|
|
| `ground_truth` | The correct numerical answer | |
|
|
| `symbolic_baseline_answer` | Answer from perfect symbolic solver | |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
# Load this specific domain |
|
|
dataset = load_dataset("cognitive-metrology-lab/MathBode-LinearSystem") |
|
|
|
|
|
# Access the data |
|
|
print(dataset['train'][0]) |
|
|
``` |
|
|
|
|
|
## Related Datasets |
|
|
|
|
|
- [MathBode](https://huggingface.co/datasets/cognitive-metrology-lab/MathBode) - Complete benchmark with all families |
|
|
- [MathBode-LinearSolve](https://huggingface.co/datasets/cognitive-metrology-lab/MathBode-LinearSolve) |
|
|
- [MathBode-RatioSaturation](https://huggingface.co/datasets/cognitive-metrology-lab/MathBode-RatioSaturation) |
|
|
- [MathBode-ExponentialInterest](https://huggingface.co/datasets/cognitive-metrology-lab/MathBode-ExponentialInterest) |
|
|
- [MathBode-LinearSystem](https://huggingface.co/datasets/cognitive-metrology-lab/MathBode-LinearSystem) |
|
|
- [MathBode-SimilarTriangles](https://huggingface.co/datasets/cognitive-metrology-lab/MathBode-SimilarTriangles) |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this dataset, please cite our work (citation to be added). |
|
|
|