ARC-Easy_Llama-3.2-1B-41kqc86o
This model is a fine-tuned version of meta-llama/Llama-3.2-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3820
- Model Preparation Time: 0.006
- Mdl: 1958.8296
- Accumulated Loss: 1357.7572
- Correct Preds: 425.0
- Total Preds: 570.0
- Accuracy: 0.7456
- Correct Gen Preds: 424.0
- Gen Accuracy: 0.7439
- Correct Gen Preds 32: 114.0
- Correct Preds 32: 115.0
- Total Labels 32: 158.0
- Accuracy 32: 0.7278
- Gen Accuracy 32: 0.7215
- Correct Gen Preds 33: 122.0
- Correct Preds 33: 122.0
- Total Labels 33: 152.0
- Accuracy 33: 0.8026
- Gen Accuracy 33: 0.8026
- Correct Gen Preds 34: 114.0
- Correct Preds 34: 114.0
- Total Labels 34: 142.0
- Accuracy 34: 0.8028
- Gen Accuracy 34: 0.8028
- Correct Gen Preds 35: 74.0
- Correct Preds 35: 74.0
- Total Labels 35: 118.0
- Accuracy 35: 0.6271
- Gen Accuracy 35: 0.6271
- Correct Gen Preds 36: 0.0
- Correct Preds 36: 0.0
- Total Labels 36: 0.0
- Accuracy 36: 0.0
- Gen Accuracy 36: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 112
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.5354 | 0.006 | 1262.6022 | 875.1692 | 172.0 | 570.0 | 0.3018 | 170.0 | 0.2982 | 154.0 | 154.0 | 158.0 | 0.9747 | 0.9747 | 0.0 | 0.0 | 152.0 | 0.0 | 0.0 | 15.0 | 17.0 | 142.0 | 0.1197 | 0.1056 | 1.0 | 1.0 | 118.0 | 0.0085 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9278 | 1.0 | 17 | 0.9560 | 0.006 | 786.1592 | 544.9240 | 363.0 | 570.0 | 0.6368 | 362.0 | 0.6351 | 75.0 | 76.0 | 158.0 | 0.4810 | 0.4747 | 118.0 | 118.0 | 152.0 | 0.7763 | 0.7763 | 101.0 | 101.0 | 142.0 | 0.7113 | 0.7113 | 68.0 | 68.0 | 118.0 | 0.5763 | 0.5763 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.5026 | 2.0 | 34 | 0.7886 | 0.006 | 648.5231 | 449.5220 | 421.0 | 570.0 | 0.7386 | 420.0 | 0.7368 | 114.0 | 115.0 | 158.0 | 0.7278 | 0.7215 | 111.0 | 111.0 | 152.0 | 0.7303 | 0.7303 | 110.0 | 110.0 | 142.0 | 0.7746 | 0.7746 | 85.0 | 85.0 | 118.0 | 0.7203 | 0.7203 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1634 | 3.0 | 51 | 1.2834 | 0.006 | 1055.3659 | 731.5239 | 414.0 | 570.0 | 0.7263 | 411.0 | 0.7211 | 107.0 | 109.0 | 158.0 | 0.6899 | 0.6772 | 118.0 | 118.0 | 152.0 | 0.7763 | 0.7763 | 100.0 | 101.0 | 142.0 | 0.7113 | 0.7042 | 86.0 | 86.0 | 118.0 | 0.7288 | 0.7288 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0839 | 4.0 | 68 | 1.5344 | 0.006 | 1261.7559 | 874.5825 | 423.0 | 570.0 | 0.7421 | 422.0 | 0.7404 | 101.0 | 102.0 | 158.0 | 0.6456 | 0.6392 | 129.0 | 129.0 | 152.0 | 0.8487 | 0.8487 | 116.0 | 116.0 | 142.0 | 0.8169 | 0.8169 | 76.0 | 76.0 | 118.0 | 0.6441 | 0.6441 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0711 | 5.0 | 85 | 1.9035 | 0.006 | 1565.2957 | 1084.9803 | 418.0 | 570.0 | 0.7333 | 417.0 | 0.7316 | 101.0 | 102.0 | 158.0 | 0.6456 | 0.6392 | 124.0 | 124.0 | 152.0 | 0.8158 | 0.8158 | 114.0 | 114.0 | 142.0 | 0.8028 | 0.8028 | 78.0 | 78.0 | 118.0 | 0.6610 | 0.6610 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1712 | 6.0 | 102 | 2.1386 | 0.006 | 1758.6841 | 1219.0269 | 414.0 | 570.0 | 0.7263 | 411.0 | 0.7211 | 126.0 | 128.0 | 158.0 | 0.8101 | 0.7975 | 114.0 | 115.0 | 152.0 | 0.7566 | 0.75 | 101.0 | 101.0 | 142.0 | 0.7113 | 0.7113 | 70.0 | 70.0 | 118.0 | 0.5932 | 0.5932 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1767 | 7.0 | 119 | 2.3820 | 0.006 | 1958.8296 | 1357.7572 | 425.0 | 570.0 | 0.7456 | 424.0 | 0.7439 | 114.0 | 115.0 | 158.0 | 0.7278 | 0.7215 | 122.0 | 122.0 | 152.0 | 0.8026 | 0.8026 | 114.0 | 114.0 | 142.0 | 0.8028 | 0.8028 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0158 | 8.0 | 136 | 2.0511 | 0.006 | 1686.6677 | 1169.1090 | 414.0 | 570.0 | 0.7263 | 413.0 | 0.7246 | 115.0 | 116.0 | 158.0 | 0.7342 | 0.7278 | 110.0 | 110.0 | 152.0 | 0.7237 | 0.7237 | 115.0 | 115.0 | 142.0 | 0.8099 | 0.8099 | 73.0 | 73.0 | 118.0 | 0.6186 | 0.6186 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0001 | 9.0 | 153 | 2.8882 | 0.006 | 2375.0503 | 1646.2594 | 405.0 | 570.0 | 0.7105 | 398.0 | 0.6982 | 84.0 | 90.0 | 158.0 | 0.5696 | 0.5316 | 120.0 | 121.0 | 152.0 | 0.7961 | 0.7895 | 110.0 | 110.0 | 142.0 | 0.7746 | 0.7746 | 84.0 | 84.0 | 118.0 | 0.7119 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 10.0 | 170 | 2.7777 | 0.006 | 2284.1916 | 1583.2809 | 414.0 | 570.0 | 0.7263 | 413.0 | 0.7246 | 106.0 | 107.0 | 158.0 | 0.6772 | 0.6709 | 122.0 | 122.0 | 152.0 | 0.8026 | 0.8026 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 73.0 | 73.0 | 118.0 | 0.6186 | 0.6186 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 11.0 | 187 | 2.8946 | 0.006 | 2380.2971 | 1649.8962 | 410.0 | 570.0 | 0.7193 | 409.0 | 0.7175 | 99.0 | 100.0 | 158.0 | 0.6329 | 0.6266 | 122.0 | 122.0 | 152.0 | 0.8026 | 0.8026 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 76.0 | 76.0 | 118.0 | 0.6441 | 0.6441 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 12.0 | 204 | 2.9371 | 0.006 | 2415.2833 | 1674.1468 | 411.0 | 570.0 | 0.7211 | 410.0 | 0.7193 | 97.0 | 98.0 | 158.0 | 0.6203 | 0.6139 | 121.0 | 121.0 | 152.0 | 0.7961 | 0.7961 | 113.0 | 113.0 | 142.0 | 0.7958 | 0.7958 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 13.0 | 221 | 3.0100 | 0.006 | 2475.2057 | 1715.6818 | 408.0 | 570.0 | 0.7158 | 407.0 | 0.7140 | 97.0 | 98.0 | 158.0 | 0.6203 | 0.6139 | 119.0 | 119.0 | 152.0 | 0.7829 | 0.7829 | 111.0 | 111.0 | 142.0 | 0.7817 | 0.7817 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 14.0 | 238 | 3.0076 | 0.006 | 2473.2184 | 1714.3044 | 409.0 | 570.0 | 0.7175 | 408.0 | 0.7158 | 97.0 | 98.0 | 158.0 | 0.6203 | 0.6139 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 15.0 | 255 | 3.0392 | 0.006 | 2499.2324 | 1732.3359 | 408.0 | 570.0 | 0.7158 | 407.0 | 0.7140 | 96.0 | 97.0 | 158.0 | 0.6139 | 0.6076 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 16.0 | 272 | 3.0357 | 0.006 | 2496.3936 | 1730.3682 | 408.0 | 570.0 | 0.7158 | 407.0 | 0.7140 | 96.0 | 97.0 | 158.0 | 0.6139 | 0.6076 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 17.0 | 289 | 3.0563 | 0.006 | 2513.3049 | 1742.0902 | 409.0 | 570.0 | 0.7175 | 408.0 | 0.7158 | 96.0 | 97.0 | 158.0 | 0.6139 | 0.6076 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 18.0 | 306 | 3.0748 | 0.006 | 2528.4881 | 1752.6144 | 409.0 | 570.0 | 0.7175 | 408.0 | 0.7158 | 97.0 | 98.0 | 158.0 | 0.6203 | 0.6139 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 19.0 | 323 | 3.0687 | 0.006 | 2523.4931 | 1749.1521 | 410.0 | 570.0 | 0.7193 | 409.0 | 0.7175 | 97.0 | 98.0 | 158.0 | 0.6203 | 0.6139 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 20.0 | 340 | 3.0976 | 0.006 | 2547.2585 | 1765.6251 | 406.0 | 570.0 | 0.7123 | 405.0 | 0.7105 | 95.0 | 96.0 | 158.0 | 0.6076 | 0.6013 | 119.0 | 119.0 | 152.0 | 0.7829 | 0.7829 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 21.0 | 357 | 3.0811 | 0.006 | 2533.6756 | 1756.2101 | 409.0 | 570.0 | 0.7175 | 408.0 | 0.7158 | 96.0 | 97.0 | 158.0 | 0.6139 | 0.6076 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 22.0 | 374 | 3.1021 | 0.006 | 2550.9523 | 1768.1854 | 408.0 | 570.0 | 0.7158 | 407.0 | 0.7140 | 96.0 | 97.0 | 158.0 | 0.6139 | 0.6076 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 23.0 | 391 | 3.1118 | 0.006 | 2558.9477 | 1773.7274 | 409.0 | 570.0 | 0.7175 | 408.0 | 0.7158 | 96.0 | 97.0 | 158.0 | 0.6139 | 0.6076 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 24.0 | 408 | 3.1083 | 0.006 | 2556.0379 | 1771.7105 | 408.0 | 570.0 | 0.7158 | 407.0 | 0.7140 | 96.0 | 97.0 | 158.0 | 0.6139 | 0.6076 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 25.0 | 425 | 3.1119 | 0.006 | 2559.0555 | 1773.8021 | 410.0 | 570.0 | 0.7193 | 409.0 | 0.7175 | 97.0 | 98.0 | 158.0 | 0.6203 | 0.6139 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 26.0 | 442 | 3.1180 | 0.006 | 2564.0249 | 1777.2466 | 408.0 | 570.0 | 0.7158 | 407.0 | 0.7140 | 96.0 | 97.0 | 158.0 | 0.6139 | 0.6076 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 27.0 | 459 | 3.1338 | 0.006 | 2577.0435 | 1786.2704 | 408.0 | 570.0 | 0.7158 | 407.0 | 0.7140 | 96.0 | 97.0 | 158.0 | 0.6139 | 0.6076 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Model tree for donoway/ARC-Easy_Llama-3.2-1B-41kqc86o
Base model
meta-llama/Llama-3.2-1B