ARC-Easy_Llama-3.2-1B-41kqc86o

This model is a fine-tuned version of meta-llama/Llama-3.2-1B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3820
  • Model Preparation Time: 0.006
  • Mdl: 1958.8296
  • Accumulated Loss: 1357.7572
  • Correct Preds: 425.0
  • Total Preds: 570.0
  • Accuracy: 0.7456
  • Correct Gen Preds: 424.0
  • Gen Accuracy: 0.7439
  • Correct Gen Preds 32: 114.0
  • Correct Preds 32: 115.0
  • Total Labels 32: 158.0
  • Accuracy 32: 0.7278
  • Gen Accuracy 32: 0.7215
  • Correct Gen Preds 33: 122.0
  • Correct Preds 33: 122.0
  • Total Labels 33: 152.0
  • Accuracy 33: 0.8026
  • Gen Accuracy 33: 0.8026
  • Correct Gen Preds 34: 114.0
  • Correct Preds 34: 114.0
  • Total Labels 34: 142.0
  • Accuracy 34: 0.8028
  • Gen Accuracy 34: 0.8028
  • Correct Gen Preds 35: 74.0
  • Correct Preds 35: 74.0
  • Total Labels 35: 118.0
  • Accuracy 35: 0.6271
  • Gen Accuracy 35: 0.6271
  • Correct Gen Preds 36: 0.0
  • Correct Preds 36: 0.0
  • Total Labels 36: 0.0
  • Accuracy 36: 0.0
  • Gen Accuracy 36: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 112
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Mdl Accumulated Loss Correct Preds Total Preds Accuracy Correct Gen Preds Gen Accuracy Correct Gen Preds 32 Correct Preds 32 Total Labels 32 Accuracy 32 Gen Accuracy 32 Correct Gen Preds 33 Correct Preds 33 Total Labels 33 Accuracy 33 Gen Accuracy 33 Correct Gen Preds 34 Correct Preds 34 Total Labels 34 Accuracy 34 Gen Accuracy 34 Correct Gen Preds 35 Correct Preds 35 Total Labels 35 Accuracy 35 Gen Accuracy 35 Correct Gen Preds 36 Correct Preds 36 Total Labels 36 Accuracy 36 Gen Accuracy 36
No log 0 0 1.5354 0.006 1262.6022 875.1692 172.0 570.0 0.3018 170.0 0.2982 154.0 154.0 158.0 0.9747 0.9747 0.0 0.0 152.0 0.0 0.0 15.0 17.0 142.0 0.1197 0.1056 1.0 1.0 118.0 0.0085 0.0085 0.0 0.0 0.0 0.0 0.0
0.9278 1.0 17 0.9560 0.006 786.1592 544.9240 363.0 570.0 0.6368 362.0 0.6351 75.0 76.0 158.0 0.4810 0.4747 118.0 118.0 152.0 0.7763 0.7763 101.0 101.0 142.0 0.7113 0.7113 68.0 68.0 118.0 0.5763 0.5763 0.0 0.0 0.0 0.0 0.0
0.5026 2.0 34 0.7886 0.006 648.5231 449.5220 421.0 570.0 0.7386 420.0 0.7368 114.0 115.0 158.0 0.7278 0.7215 111.0 111.0 152.0 0.7303 0.7303 110.0 110.0 142.0 0.7746 0.7746 85.0 85.0 118.0 0.7203 0.7203 0.0 0.0 0.0 0.0 0.0
0.1634 3.0 51 1.2834 0.006 1055.3659 731.5239 414.0 570.0 0.7263 411.0 0.7211 107.0 109.0 158.0 0.6899 0.6772 118.0 118.0 152.0 0.7763 0.7763 100.0 101.0 142.0 0.7113 0.7042 86.0 86.0 118.0 0.7288 0.7288 0.0 0.0 0.0 0.0 0.0
0.0839 4.0 68 1.5344 0.006 1261.7559 874.5825 423.0 570.0 0.7421 422.0 0.7404 101.0 102.0 158.0 0.6456 0.6392 129.0 129.0 152.0 0.8487 0.8487 116.0 116.0 142.0 0.8169 0.8169 76.0 76.0 118.0 0.6441 0.6441 0.0 0.0 0.0 0.0 0.0
0.0711 5.0 85 1.9035 0.006 1565.2957 1084.9803 418.0 570.0 0.7333 417.0 0.7316 101.0 102.0 158.0 0.6456 0.6392 124.0 124.0 152.0 0.8158 0.8158 114.0 114.0 142.0 0.8028 0.8028 78.0 78.0 118.0 0.6610 0.6610 0.0 0.0 0.0 0.0 0.0
0.1712 6.0 102 2.1386 0.006 1758.6841 1219.0269 414.0 570.0 0.7263 411.0 0.7211 126.0 128.0 158.0 0.8101 0.7975 114.0 115.0 152.0 0.7566 0.75 101.0 101.0 142.0 0.7113 0.7113 70.0 70.0 118.0 0.5932 0.5932 0.0 0.0 0.0 0.0 0.0
0.1767 7.0 119 2.3820 0.006 1958.8296 1357.7572 425.0 570.0 0.7456 424.0 0.7439 114.0 115.0 158.0 0.7278 0.7215 122.0 122.0 152.0 0.8026 0.8026 114.0 114.0 142.0 0.8028 0.8028 74.0 74.0 118.0 0.6271 0.6271 0.0 0.0 0.0 0.0 0.0
0.0158 8.0 136 2.0511 0.006 1686.6677 1169.1090 414.0 570.0 0.7263 413.0 0.7246 115.0 116.0 158.0 0.7342 0.7278 110.0 110.0 152.0 0.7237 0.7237 115.0 115.0 142.0 0.8099 0.8099 73.0 73.0 118.0 0.6186 0.6186 0.0 0.0 0.0 0.0 0.0
0.0001 9.0 153 2.8882 0.006 2375.0503 1646.2594 405.0 570.0 0.7105 398.0 0.6982 84.0 90.0 158.0 0.5696 0.5316 120.0 121.0 152.0 0.7961 0.7895 110.0 110.0 142.0 0.7746 0.7746 84.0 84.0 118.0 0.7119 0.7119 0.0 0.0 0.0 0.0 0.0
0.0 10.0 170 2.7777 0.006 2284.1916 1583.2809 414.0 570.0 0.7263 413.0 0.7246 106.0 107.0 158.0 0.6772 0.6709 122.0 122.0 152.0 0.8026 0.8026 112.0 112.0 142.0 0.7887 0.7887 73.0 73.0 118.0 0.6186 0.6186 0.0 0.0 0.0 0.0 0.0
0.0 11.0 187 2.8946 0.006 2380.2971 1649.8962 410.0 570.0 0.7193 409.0 0.7175 99.0 100.0 158.0 0.6329 0.6266 122.0 122.0 152.0 0.8026 0.8026 112.0 112.0 142.0 0.7887 0.7887 76.0 76.0 118.0 0.6441 0.6441 0.0 0.0 0.0 0.0 0.0
0.0 12.0 204 2.9371 0.006 2415.2833 1674.1468 411.0 570.0 0.7211 410.0 0.7193 97.0 98.0 158.0 0.6203 0.6139 121.0 121.0 152.0 0.7961 0.7961 113.0 113.0 142.0 0.7958 0.7958 79.0 79.0 118.0 0.6695 0.6695 0.0 0.0 0.0 0.0 0.0
0.0 13.0 221 3.0100 0.006 2475.2057 1715.6818 408.0 570.0 0.7158 407.0 0.7140 97.0 98.0 158.0 0.6203 0.6139 119.0 119.0 152.0 0.7829 0.7829 111.0 111.0 142.0 0.7817 0.7817 80.0 80.0 118.0 0.6780 0.6780 0.0 0.0 0.0 0.0 0.0
0.0 14.0 238 3.0076 0.006 2473.2184 1714.3044 409.0 570.0 0.7175 408.0 0.7158 97.0 98.0 158.0 0.6203 0.6139 120.0 120.0 152.0 0.7895 0.7895 112.0 112.0 142.0 0.7887 0.7887 79.0 79.0 118.0 0.6695 0.6695 0.0 0.0 0.0 0.0 0.0
0.0 15.0 255 3.0392 0.006 2499.2324 1732.3359 408.0 570.0 0.7158 407.0 0.7140 96.0 97.0 158.0 0.6139 0.6076 120.0 120.0 152.0 0.7895 0.7895 112.0 112.0 142.0 0.7887 0.7887 79.0 79.0 118.0 0.6695 0.6695 0.0 0.0 0.0 0.0 0.0
0.0 16.0 272 3.0357 0.006 2496.3936 1730.3682 408.0 570.0 0.7158 407.0 0.7140 96.0 97.0 158.0 0.6139 0.6076 120.0 120.0 152.0 0.7895 0.7895 112.0 112.0 142.0 0.7887 0.7887 79.0 79.0 118.0 0.6695 0.6695 0.0 0.0 0.0 0.0 0.0
0.0 17.0 289 3.0563 0.006 2513.3049 1742.0902 409.0 570.0 0.7175 408.0 0.7158 96.0 97.0 158.0 0.6139 0.6076 120.0 120.0 152.0 0.7895 0.7895 112.0 112.0 142.0 0.7887 0.7887 80.0 80.0 118.0 0.6780 0.6780 0.0 0.0 0.0 0.0 0.0
0.0 18.0 306 3.0748 0.006 2528.4881 1752.6144 409.0 570.0 0.7175 408.0 0.7158 97.0 98.0 158.0 0.6203 0.6139 120.0 120.0 152.0 0.7895 0.7895 112.0 112.0 142.0 0.7887 0.7887 79.0 79.0 118.0 0.6695 0.6695 0.0 0.0 0.0 0.0 0.0
0.0 19.0 323 3.0687 0.006 2523.4931 1749.1521 410.0 570.0 0.7193 409.0 0.7175 97.0 98.0 158.0 0.6203 0.6139 120.0 120.0 152.0 0.7895 0.7895 112.0 112.0 142.0 0.7887 0.7887 80.0 80.0 118.0 0.6780 0.6780 0.0 0.0 0.0 0.0 0.0
0.0 20.0 340 3.0976 0.006 2547.2585 1765.6251 406.0 570.0 0.7123 405.0 0.7105 95.0 96.0 158.0 0.6076 0.6013 119.0 119.0 152.0 0.7829 0.7829 112.0 112.0 142.0 0.7887 0.7887 79.0 79.0 118.0 0.6695 0.6695 0.0 0.0 0.0 0.0 0.0
0.0 21.0 357 3.0811 0.006 2533.6756 1756.2101 409.0 570.0 0.7175 408.0 0.7158 96.0 97.0 158.0 0.6139 0.6076 120.0 120.0 152.0 0.7895 0.7895 112.0 112.0 142.0 0.7887 0.7887 80.0 80.0 118.0 0.6780 0.6780 0.0 0.0 0.0 0.0 0.0
0.0 22.0 374 3.1021 0.006 2550.9523 1768.1854 408.0 570.0 0.7158 407.0 0.7140 96.0 97.0 158.0 0.6139 0.6076 120.0 120.0 152.0 0.7895 0.7895 112.0 112.0 142.0 0.7887 0.7887 79.0 79.0 118.0 0.6695 0.6695 0.0 0.0 0.0 0.0 0.0
0.0 23.0 391 3.1118 0.006 2558.9477 1773.7274 409.0 570.0 0.7175 408.0 0.7158 96.0 97.0 158.0 0.6139 0.6076 120.0 120.0 152.0 0.7895 0.7895 112.0 112.0 142.0 0.7887 0.7887 80.0 80.0 118.0 0.6780 0.6780 0.0 0.0 0.0 0.0 0.0
0.0 24.0 408 3.1083 0.006 2556.0379 1771.7105 408.0 570.0 0.7158 407.0 0.7140 96.0 97.0 158.0 0.6139 0.6076 120.0 120.0 152.0 0.7895 0.7895 112.0 112.0 142.0 0.7887 0.7887 79.0 79.0 118.0 0.6695 0.6695 0.0 0.0 0.0 0.0 0.0
0.0 25.0 425 3.1119 0.006 2559.0555 1773.8021 410.0 570.0 0.7193 409.0 0.7175 97.0 98.0 158.0 0.6203 0.6139 120.0 120.0 152.0 0.7895 0.7895 112.0 112.0 142.0 0.7887 0.7887 80.0 80.0 118.0 0.6780 0.6780 0.0 0.0 0.0 0.0 0.0
0.0 26.0 442 3.1180 0.006 2564.0249 1777.2466 408.0 570.0 0.7158 407.0 0.7140 96.0 97.0 158.0 0.6139 0.6076 120.0 120.0 152.0 0.7895 0.7895 112.0 112.0 142.0 0.7887 0.7887 79.0 79.0 118.0 0.6695 0.6695 0.0 0.0 0.0 0.0 0.0
0.0 27.0 459 3.1338 0.006 2577.0435 1786.2704 408.0 570.0 0.7158 407.0 0.7140 96.0 97.0 158.0 0.6139 0.6076 120.0 120.0 152.0 0.7895 0.7895 112.0 112.0 142.0 0.7887 0.7887 79.0 79.0 118.0 0.6695 0.6695 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
1B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for donoway/ARC-Easy_Llama-3.2-1B-41kqc86o

Finetuned
(845)
this model

Evaluation results