ARC-Easy_Llama-3.2-1B-dygan5pn

This model is a fine-tuned version of meta-llama/Llama-3.2-1B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7461
  • Model Preparation Time: 0.0057
  • Mdl: 2258.2292
  • Accumulated Loss: 1565.2852
  • Correct Preds: 410.0
  • Total Preds: 570.0
  • Accuracy: 0.7193
  • Correct Gen Preds: 387.0
  • Gen Accuracy: 0.6789
  • Correct Gen Preds 32: 99.0
  • Correct Preds 32: 113.0
  • Total Labels 32: 158.0
  • Accuracy 32: 0.7152
  • Gen Accuracy 32: 0.6266
  • Correct Gen Preds 33: 113.0
  • Correct Preds 33: 115.0
  • Total Labels 33: 152.0
  • Accuracy 33: 0.7566
  • Gen Accuracy 33: 0.7434
  • Correct Gen Preds 34: 96.0
  • Correct Preds 34: 98.0
  • Total Labels 34: 142.0
  • Accuracy 34: 0.6901
  • Gen Accuracy 34: 0.6761
  • Correct Gen Preds 35: 79.0
  • Correct Preds 35: 84.0
  • Total Labels 35: 118.0
  • Accuracy 35: 0.7119
  • Gen Accuracy 35: 0.6695
  • Correct Gen Preds 36: 0.0
  • Correct Preds 36: 0.0
  • Total Labels 36: 0.0
  • Accuracy 36: 0.0
  • Gen Accuracy 36: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 112
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Mdl Accumulated Loss Correct Preds Total Preds Accuracy Correct Gen Preds Gen Accuracy Correct Gen Preds 32 Correct Preds 32 Total Labels 32 Accuracy 32 Gen Accuracy 32 Correct Gen Preds 33 Correct Preds 33 Total Labels 33 Accuracy 33 Gen Accuracy 33 Correct Gen Preds 34 Correct Preds 34 Total Labels 34 Accuracy 34 Gen Accuracy 34 Correct Gen Preds 35 Correct Preds 35 Total Labels 35 Accuracy 35 Gen Accuracy 35 Correct Gen Preds 36 Correct Preds 36 Total Labels 36 Accuracy 36 Gen Accuracy 36
No log 0 0 1.5354 0.0057 1262.6022 875.1692 172.0 570.0 0.3018 170.0 0.2982 154.0 154.0 158.0 0.9747 0.9747 0.0 0.0 152.0 0.0 0.0 15.0 17.0 142.0 0.1197 0.1056 1.0 1.0 118.0 0.0085 0.0085 0.0 0.0 0.0 0.0 0.0
1.3867 1.0 6 1.0016 0.0057 823.6421 570.9052 379.0 570.0 0.6649 379.0 0.6649 111.0 111.0 158.0 0.7025 0.7025 120.0 120.0 152.0 0.7895 0.7895 85.0 85.0 142.0 0.5986 0.5986 63.0 63.0 118.0 0.5339 0.5339 0.0 0.0 0.0 0.0 0.0
1.1746 2.0 12 0.9085 0.0057 747.0919 517.8447 384.0 570.0 0.6737 384.0 0.6737 96.0 96.0 158.0 0.6076 0.6076 130.0 130.0 152.0 0.8553 0.8553 97.0 97.0 142.0 0.6831 0.6831 61.0 61.0 118.0 0.5169 0.5169 0.0 0.0 0.0 0.0 0.0
0.0054 3.0 18 1.5269 0.0057 1255.6062 870.3199 409.0 570.0 0.7175 409.0 0.7175 112.0 112.0 158.0 0.7089 0.7089 116.0 116.0 152.0 0.7632 0.7632 94.0 94.0 142.0 0.6620 0.6620 87.0 87.0 118.0 0.7373 0.7373 0.0 0.0 0.0 0.0 0.0
0.0 4.0 24 2.6585 0.0057 2186.1764 1515.3420 406.0 570.0 0.7123 405.0 0.7105 93.0 94.0 158.0 0.5949 0.5886 126.0 126.0 152.0 0.8289 0.8289 104.0 104.0 142.0 0.7324 0.7324 82.0 82.0 118.0 0.6949 0.6949 0.0 0.0 0.0 0.0 0.0
0.0 5.0 30 2.9638 0.0057 2437.2343 1689.3621 396.0 570.0 0.6947 388.0 0.6807 123.0 129.0 158.0 0.8165 0.7785 107.0 107.0 152.0 0.7039 0.7039 88.0 89.0 142.0 0.6268 0.6197 70.0 71.0 118.0 0.6017 0.5932 0.0 0.0 0.0 0.0 0.0
0.0 6.0 36 2.7461 0.0057 2258.2292 1565.2852 410.0 570.0 0.7193 387.0 0.6789 99.0 113.0 158.0 0.7152 0.6266 113.0 115.0 152.0 0.7566 0.7434 96.0 98.0 142.0 0.6901 0.6761 79.0 84.0 118.0 0.7119 0.6695 0.0 0.0 0.0 0.0 0.0
0.6357 7.0 42 2.8084 0.0057 2309.4303 1600.7751 403.0 570.0 0.7070 267.0 0.4684 46.0 108.0 158.0 0.6835 0.2911 87.0 115.0 152.0 0.7566 0.5724 74.0 98.0 142.0 0.6901 0.5211 60.0 82.0 118.0 0.6949 0.5085 0.0 0.0 0.0 0.0 0.0
1.9179 8.0 48 2.8006 0.0057 2303.0086 1596.3239 402.0 570.0 0.7053 60.0 0.1053 5.0 121.0 158.0 0.7658 0.0316 20.0 106.0 152.0 0.6974 0.1316 15.0 100.0 142.0 0.7042 0.1056 20.0 75.0 118.0 0.6356 0.1695 0.0 0.0 0.0 0.0 0.0
0.0001 9.0 54 3.0054 0.0057 2471.4361 1713.0690 405.0 570.0 0.7105 153.0 0.2684 18.0 121.0 158.0 0.7658 0.1139 45.0 106.0 152.0 0.6974 0.2961 49.0 104.0 142.0 0.7324 0.3451 41.0 74.0 118.0 0.6271 0.3475 0.0 0.0 0.0 0.0 0.0
0.0 10.0 60 3.1819 0.0057 2616.5819 1813.6764 404.0 570.0 0.7088 302.0 0.5298 70.0 120.0 158.0 0.7595 0.4430 84.0 105.0 152.0 0.6908 0.5526 87.0 102.0 142.0 0.7183 0.6127 61.0 77.0 118.0 0.6525 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 11.0 66 3.2572 0.0057 2678.5170 1856.6065 402.0 570.0 0.7053 349.0 0.6123 93.0 121.0 158.0 0.7658 0.5886 95.0 105.0 152.0 0.6908 0.625 95.0 101.0 142.0 0.7113 0.6690 66.0 75.0 118.0 0.6356 0.5593 0.0 0.0 0.0 0.0 0.0
0.0 12.0 72 3.2819 0.0057 2698.8538 1870.7029 405.0 570.0 0.7105 365.0 0.6404 99.0 121.0 158.0 0.7658 0.6266 99.0 105.0 152.0 0.6908 0.6513 96.0 101.0 142.0 0.7113 0.6761 71.0 78.0 118.0 0.6610 0.6017 0.0 0.0 0.0 0.0 0.0
0.0 13.0 78 3.3385 0.0057 2745.3597 1902.9383 404.0 570.0 0.7088 373.0 0.6544 103.0 121.0 158.0 0.7658 0.6519 101.0 105.0 152.0 0.6908 0.6645 96.0 100.0 142.0 0.7042 0.6761 73.0 78.0 118.0 0.6610 0.6186 0.0 0.0 0.0 0.0 0.0
0.0 14.0 84 3.3290 0.0057 2737.5652 1897.5356 403.0 570.0 0.7070 376.0 0.6596 106.0 121.0 158.0 0.7658 0.6709 102.0 105.0 152.0 0.6908 0.6711 96.0 100.0 142.0 0.7042 0.6761 72.0 77.0 118.0 0.6525 0.6102 0.0 0.0 0.0 0.0 0.0
0.0 15.0 90 3.3171 0.0057 2727.7934 1890.7623 403.0 570.0 0.7070 375.0 0.6579 105.0 121.0 158.0 0.7658 0.6646 101.0 105.0 152.0 0.6908 0.6645 96.0 100.0 142.0 0.7042 0.6761 73.0 77.0 118.0 0.6525 0.6186 0.0 0.0 0.0 0.0 0.0
0.0 16.0 96 3.3260 0.0057 2735.1033 1895.8291 402.0 570.0 0.7053 374.0 0.6561 105.0 121.0 158.0 0.7658 0.6646 101.0 105.0 152.0 0.6908 0.6645 96.0 100.0 142.0 0.7042 0.6761 72.0 76.0 118.0 0.6441 0.6102 0.0 0.0 0.0 0.0 0.0
0.0 17.0 102 3.3211 0.0057 2731.0335 1893.0082 406.0 570.0 0.7123 380.0 0.6667 108.0 122.0 158.0 0.7722 0.6835 102.0 106.0 152.0 0.6974 0.6711 96.0 100.0 142.0 0.7042 0.6761 74.0 78.0 118.0 0.6610 0.6271 0.0 0.0 0.0 0.0 0.0
0.0 18.0 108 3.3253 0.0057 2734.5364 1895.4362 404.0 570.0 0.7088 377.0 0.6614 105.0 121.0 158.0 0.7658 0.6646 102.0 106.0 152.0 0.6974 0.6711 96.0 100.0 142.0 0.7042 0.6761 74.0 77.0 118.0 0.6525 0.6271 0.0 0.0 0.0 0.0 0.0
0.0 19.0 114 3.3377 0.0057 2744.6939 1902.4768 402.0 570.0 0.7053 378.0 0.6632 108.0 121.0 158.0 0.7658 0.6835 102.0 105.0 152.0 0.6908 0.6711 95.0 99.0 142.0 0.6972 0.6690 73.0 77.0 118.0 0.6525 0.6186 0.0 0.0 0.0 0.0 0.0
0.0 20.0 120 3.3364 0.0057 2743.6099 1901.7254 405.0 570.0 0.7105 382.0 0.6702 108.0 121.0 158.0 0.7658 0.6835 103.0 105.0 152.0 0.6908 0.6776 97.0 101.0 142.0 0.7113 0.6831 74.0 78.0 118.0 0.6610 0.6271 0.0 0.0 0.0 0.0 0.0
0.0 21.0 126 3.3373 0.0057 2744.3570 1902.2433 405.0 570.0 0.7105 379.0 0.6649 107.0 121.0 158.0 0.7658 0.6772 102.0 106.0 152.0 0.6974 0.6711 96.0 100.0 142.0 0.7042 0.6761 74.0 78.0 118.0 0.6610 0.6271 0.0 0.0 0.0 0.0 0.0
0.0 22.0 132 3.3504 0.0057 2755.1293 1909.7101 404.0 570.0 0.7088 381.0 0.6684 109.0 121.0 158.0 0.7658 0.6899 103.0 106.0 152.0 0.6974 0.6776 96.0 100.0 142.0 0.7042 0.6761 73.0 77.0 118.0 0.6525 0.6186 0.0 0.0 0.0 0.0 0.0
0.0 23.0 138 3.3447 0.0057 2750.4965 1906.4989 407.0 570.0 0.7140 380.0 0.6667 108.0 122.0 158.0 0.7722 0.6835 103.0 106.0 152.0 0.6974 0.6776 96.0 101.0 142.0 0.7113 0.6761 73.0 78.0 118.0 0.6610 0.6186 0.0 0.0 0.0 0.0 0.0
0.0 24.0 144 3.3547 0.0057 2758.6616 1912.1585 404.0 570.0 0.7088 382.0 0.6702 109.0 121.0 158.0 0.7658 0.6899 103.0 105.0 152.0 0.6908 0.6776 96.0 100.0 142.0 0.7042 0.6761 74.0 78.0 118.0 0.6610 0.6271 0.0 0.0 0.0 0.0 0.0
0.0 25.0 150 3.3695 0.0057 2770.8605 1920.6142 405.0 570.0 0.7105 381.0 0.6684 109.0 121.0 158.0 0.7658 0.6899 102.0 105.0 152.0 0.6908 0.6711 96.0 101.0 142.0 0.7113 0.6761 74.0 78.0 118.0 0.6610 0.6271 0.0 0.0 0.0 0.0 0.0
0.0 26.0 156 3.3721 0.0057 2772.9899 1922.0901 403.0 570.0 0.7070 383.0 0.6719 111.0 121.0 158.0 0.7658 0.7025 102.0 104.0 152.0 0.6842 0.6711 96.0 101.0 142.0 0.7113 0.6761 74.0 77.0 118.0 0.6525 0.6271 0.0 0.0 0.0 0.0 0.0
0.0 27.0 162 3.3721 0.0057 2772.9858 1922.0873 404.0 570.0 0.7088 382.0 0.6702 111.0 121.0 158.0 0.7658 0.7025 102.0 105.0 152.0 0.6908 0.6711 96.0 101.0 142.0 0.7113 0.6761 73.0 77.0 118.0 0.6525 0.6186 0.0 0.0 0.0 0.0 0.0
0.0 28.0 168 3.3810 0.0057 2780.3503 1927.1920 401.0 570.0 0.7035 380.0 0.6667 110.0 121.0 158.0 0.7658 0.6962 103.0 105.0 152.0 0.6908 0.6776 95.0 99.0 142.0 0.6972 0.6690 72.0 76.0 118.0 0.6441 0.6102 0.0 0.0 0.0 0.0 0.0
0.0 29.0 174 3.3540 0.0057 2758.0755 1911.7523 404.0 570.0 0.7088 385.0 0.6754 112.0 121.0 158.0 0.7658 0.7089 103.0 105.0 152.0 0.6908 0.6776 96.0 100.0 142.0 0.7042 0.6761 74.0 78.0 118.0 0.6610 0.6271 0.0 0.0 0.0 0.0 0.0
0.0 30.0 180 3.3641 0.0057 2766.4616 1917.5651 402.0 570.0 0.7053 381.0 0.6684 111.0 121.0 158.0 0.7658 0.7025 102.0 105.0 152.0 0.6908 0.6711 96.0 100.0 142.0 0.7042 0.6761 72.0 76.0 118.0 0.6441 0.6102 0.0 0.0 0.0 0.0 0.0
0.0 31.0 186 3.3698 0.0057 2771.1427 1920.8097 404.0 570.0 0.7088 381.0 0.6684 110.0 121.0 158.0 0.7658 0.6962 102.0 105.0 152.0 0.6908 0.6711 96.0 101.0 142.0 0.7113 0.6761 73.0 77.0 118.0 0.6525 0.6186 0.0 0.0 0.0 0.0 0.0
0.0 32.0 192 3.3674 0.0057 2769.1561 1919.4328 402.0 570.0 0.7053 382.0 0.6702 110.0 121.0 158.0 0.7658 0.6962 102.0 104.0 152.0 0.6842 0.6711 96.0 100.0 142.0 0.7042 0.6761 74.0 77.0 118.0 0.6525 0.6271 0.0 0.0 0.0 0.0 0.0
0.0 33.0 198 3.3907 0.0057 2788.3243 1932.7191 403.0 570.0 0.7070 385.0 0.6754 111.0 121.0 158.0 0.7658 0.7025 103.0 105.0 152.0 0.6908 0.6776 96.0 100.0 142.0 0.7042 0.6761 75.0 77.0 118.0 0.6525 0.6356 0.0 0.0 0.0 0.0 0.0
0.0 34.0 204 3.3846 0.0057 2783.2820 1929.2241 404.0 570.0 0.7088 383.0 0.6719 111.0 121.0 158.0 0.7658 0.7025 102.0 105.0 152.0 0.6908 0.6711 95.0 100.0 142.0 0.7042 0.6690 75.0 78.0 118.0 0.6610 0.6356 0.0 0.0 0.0 0.0 0.0
0.0 35.0 210 3.3754 0.0057 2775.7349 1923.9928 403.0 570.0 0.7070 386.0 0.6772 113.0 121.0 158.0 0.7658 0.7152 102.0 105.0 152.0 0.6908 0.6711 97.0 100.0 142.0 0.7042 0.6831 74.0 77.0 118.0 0.6525 0.6271 0.0 0.0 0.0 0.0 0.0
0.0 36.0 216 3.3802 0.0057 2779.6781 1926.7260 406.0 570.0 0.7123 387.0 0.6789 112.0 122.0 158.0 0.7722 0.7089 103.0 105.0 152.0 0.6908 0.6776 96.0 101.0 142.0 0.7113 0.6761 76.0 78.0 118.0 0.6610 0.6441 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
1B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for donoway/ARC-Easy_Llama-3.2-1B-dygan5pn

Finetuned
(845)
this model

Evaluation results