ARC-Easy_Llama-3.2-1B-jrm0jamn

This model is a fine-tuned version of meta-llama/Llama-3.2-1B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8504
  • Model Preparation Time: 0.0059
  • Mdl: 1521.6846
  • Accumulated Loss: 1054.7514
  • Correct Preds: 380.0
  • Total Preds: 570.0
  • Accuracy: 0.6667
  • Correct Gen Preds: 380.0
  • Gen Accuracy: 0.6667
  • Correct Gen Preds 32: 122.0
  • Correct Preds 32: 122.0
  • Total Labels 32: 158.0
  • Accuracy 32: 0.7722
  • Gen Accuracy 32: 0.7722
  • Correct Gen Preds 33: 115.0
  • Correct Preds 33: 115.0
  • Total Labels 33: 152.0
  • Accuracy 33: 0.7566
  • Gen Accuracy 33: 0.7566
  • Correct Gen Preds 34: 78.0
  • Correct Preds 34: 78.0
  • Total Labels 34: 142.0
  • Accuracy 34: 0.5493
  • Gen Accuracy 34: 0.5493
  • Correct Gen Preds 35: 65.0
  • Correct Preds 35: 65.0
  • Total Labels 35: 118.0
  • Accuracy 35: 0.5508
  • Gen Accuracy 35: 0.5508
  • Correct Gen Preds 36: 0.0
  • Correct Preds 36: 0.0
  • Total Labels 36: 0.0
  • Accuracy 36: 0.0
  • Gen Accuracy 36: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 112
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Mdl Accumulated Loss Correct Preds Total Preds Accuracy Correct Gen Preds Gen Accuracy Correct Gen Preds 32 Correct Preds 32 Total Labels 32 Accuracy 32 Gen Accuracy 32 Correct Gen Preds 33 Correct Preds 33 Total Labels 33 Accuracy 33 Gen Accuracy 33 Correct Gen Preds 34 Correct Preds 34 Total Labels 34 Accuracy 34 Gen Accuracy 34 Correct Gen Preds 35 Correct Preds 35 Total Labels 35 Accuracy 35 Gen Accuracy 35 Correct Gen Preds 36 Correct Preds 36 Total Labels 36 Accuracy 36 Gen Accuracy 36
No log 0 0 1.5354 0.0059 1262.6022 875.1692 172.0 570.0 0.3018 170.0 0.2982 154.0 154.0 158.0 0.9747 0.9747 0.0 0.0 152.0 0.0 0.0 15.0 17.0 142.0 0.1197 0.1056 1.0 1.0 118.0 0.0085 0.0085 0.0 0.0 0.0 0.0 0.0
1.4967 1.0 2 1.4528 0.0059 1194.6871 828.0940 186.0 570.0 0.3263 186.0 0.3263 0.0 0.0 158.0 0.0 0.0 148.0 148.0 152.0 0.9737 0.9737 19.0 19.0 142.0 0.1338 0.1338 19.0 19.0 118.0 0.1610 0.1610 0.0 0.0 0.0 0.0 0.0
1.0859 2.0 4 1.0903 0.0059 896.5652 621.4516 326.0 570.0 0.5719 326.0 0.5719 69.0 69.0 158.0 0.4367 0.4367 79.0 79.0 152.0 0.5197 0.5197 76.0 76.0 142.0 0.5352 0.5352 102.0 102.0 118.0 0.8644 0.8644 0.0 0.0 0.0 0.0 0.0
0.3795 3.0 6 1.8504 0.0059 1521.6846 1054.7514 380.0 570.0 0.6667 380.0 0.6667 122.0 122.0 158.0 0.7722 0.7722 115.0 115.0 152.0 0.7566 0.7566 78.0 78.0 142.0 0.5493 0.5493 65.0 65.0 118.0 0.5508 0.5508 0.0 0.0 0.0 0.0 0.0
0.1292 4.0 8 2.0181 0.0059 1659.5713 1150.3272 377.0 570.0 0.6614 377.0 0.6614 100.0 100.0 158.0 0.6329 0.6329 126.0 126.0 152.0 0.8289 0.8289 77.0 77.0 142.0 0.5423 0.5423 74.0 74.0 118.0 0.6271 0.6271 0.0 0.0 0.0 0.0 0.0
0.0126 5.0 10 2.7711 0.0059 2278.7844 1579.5330 377.0 570.0 0.6614 377.0 0.6614 121.0 121.0 158.0 0.7658 0.7658 121.0 121.0 152.0 0.7961 0.7961 68.0 68.0 142.0 0.4789 0.4789 67.0 67.0 118.0 0.5678 0.5678 0.0 0.0 0.0 0.0 0.0
0.0001 6.0 12 3.9026 0.0059 3209.2439 2224.4784 366.0 570.0 0.6421 366.0 0.6421 100.0 100.0 158.0 0.6329 0.6329 130.0 130.0 152.0 0.8553 0.8553 65.0 65.0 142.0 0.4577 0.4577 71.0 71.0 118.0 0.6017 0.6017 0.0 0.0 0.0 0.0 0.0
0.0 7.0 14 4.6672 0.0059 3838.0176 2660.3111 366.0 570.0 0.6421 366.0 0.6421 105.0 105.0 158.0 0.6646 0.6646 123.0 123.0 152.0 0.8092 0.8092 64.0 64.0 142.0 0.4507 0.4507 74.0 74.0 118.0 0.6271 0.6271 0.0 0.0 0.0 0.0 0.0
0.0 8.0 16 5.1196 0.0059 4210.0438 2918.1800 364.0 570.0 0.6386 364.0 0.6386 105.0 105.0 158.0 0.6646 0.6646 123.0 123.0 152.0 0.8092 0.8092 60.0 60.0 142.0 0.4225 0.4225 76.0 76.0 118.0 0.6441 0.6441 0.0 0.0 0.0 0.0 0.0
0.0 9.0 18 5.3345 0.0059 4386.7564 3040.6678 361.0 570.0 0.6333 361.0 0.6333 114.0 114.0 158.0 0.7215 0.7215 127.0 127.0 152.0 0.8355 0.8355 59.0 59.0 142.0 0.4155 0.4155 61.0 61.0 118.0 0.5169 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 10.0 20 5.4206 0.0059 4457.5178 3089.7159 359.0 570.0 0.6298 359.0 0.6298 117.0 117.0 158.0 0.7405 0.7405 128.0 128.0 152.0 0.8421 0.8421 59.0 59.0 142.0 0.4155 0.4155 55.0 55.0 118.0 0.4661 0.4661 0.0 0.0 0.0 0.0 0.0
0.1576 11.0 22 5.4392 0.0059 4472.8407 3100.3370 361.0 570.0 0.6333 361.0 0.6333 118.0 118.0 158.0 0.7468 0.7468 127.0 127.0 152.0 0.8355 0.8355 60.0 60.0 142.0 0.4225 0.4225 56.0 56.0 118.0 0.4746 0.4746 0.0 0.0 0.0 0.0 0.0
0.0 12.0 24 5.3259 0.0059 4379.7011 3035.7775 365.0 570.0 0.6404 365.0 0.6404 117.0 117.0 158.0 0.7405 0.7405 127.0 127.0 152.0 0.8355 0.8355 63.0 63.0 142.0 0.4437 0.4437 58.0 58.0 118.0 0.4915 0.4915 0.0 0.0 0.0 0.0 0.0
0.0 13.0 26 5.2342 0.0059 4304.2851 2983.5031 365.0 570.0 0.6404 365.0 0.6404 116.0 116.0 158.0 0.7342 0.7342 126.0 126.0 152.0 0.8289 0.8289 64.0 64.0 142.0 0.4507 0.4507 59.0 59.0 118.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0
0.0 14.0 28 5.2364 0.0059 4306.0688 2984.7395 363.0 570.0 0.6368 363.0 0.6368 116.0 116.0 158.0 0.7342 0.7342 123.0 123.0 152.0 0.8092 0.8092 64.0 64.0 142.0 0.4507 0.4507 60.0 60.0 118.0 0.5085 0.5085 0.0 0.0 0.0 0.0 0.0
0.0 15.0 30 5.2256 0.0059 4297.1966 2978.5897 366.0 570.0 0.6421 366.0 0.6421 118.0 118.0 158.0 0.7468 0.7468 123.0 123.0 152.0 0.8092 0.8092 65.0 65.0 142.0 0.4577 0.4577 60.0 60.0 118.0 0.5085 0.5085 0.0 0.0 0.0 0.0 0.0
0.0 16.0 32 5.2122 0.0059 4286.1574 2970.9379 363.0 570.0 0.6368 363.0 0.6368 117.0 117.0 158.0 0.7405 0.7405 122.0 122.0 152.0 0.8026 0.8026 63.0 63.0 142.0 0.4437 0.4437 61.0 61.0 118.0 0.5169 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 17.0 34 5.1878 0.0059 4266.1053 2957.0389 363.0 570.0 0.6368 363.0 0.6368 118.0 118.0 158.0 0.7468 0.7468 121.0 121.0 152.0 0.7961 0.7961 64.0 64.0 142.0 0.4507 0.4507 60.0 60.0 118.0 0.5085 0.5085 0.0 0.0 0.0 0.0 0.0
0.0 18.0 36 5.1925 0.0059 4269.9907 2959.7320 363.0 570.0 0.6368 363.0 0.6368 116.0 116.0 158.0 0.7342 0.7342 122.0 122.0 152.0 0.8026 0.8026 65.0 65.0 142.0 0.4577 0.4577 60.0 60.0 118.0 0.5085 0.5085 0.0 0.0 0.0 0.0 0.0
0.0 19.0 38 5.2069 0.0059 4281.8194 2967.9310 363.0 570.0 0.6368 363.0 0.6368 117.0 117.0 158.0 0.7405 0.7405 121.0 121.0 152.0 0.7961 0.7961 64.0 64.0 142.0 0.4507 0.4507 61.0 61.0 118.0 0.5169 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 20.0 40 5.2136 0.0059 4287.3168 2971.7415 364.0 570.0 0.6386 364.0 0.6386 117.0 117.0 158.0 0.7405 0.7405 121.0 121.0 152.0 0.7961 0.7961 65.0 65.0 142.0 0.4577 0.4577 61.0 61.0 118.0 0.5169 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 21.0 42 5.1806 0.0059 4260.2052 2952.9493 363.0 570.0 0.6368 363.0 0.6368 118.0 118.0 158.0 0.7468 0.7468 119.0 119.0 152.0 0.7829 0.7829 65.0 65.0 142.0 0.4577 0.4577 61.0 61.0 118.0 0.5169 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 22.0 44 5.2170 0.0059 4290.1195 2973.6842 362.0 570.0 0.6351 362.0 0.6351 117.0 117.0 158.0 0.7405 0.7405 119.0 119.0 152.0 0.7829 0.7829 65.0 65.0 142.0 0.4577 0.4577 61.0 61.0 118.0 0.5169 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 23.0 46 5.1888 0.0059 4266.9097 2957.5964 360.0 570.0 0.6316 360.0 0.6316 115.0 115.0 158.0 0.7278 0.7278 121.0 121.0 152.0 0.7961 0.7961 64.0 64.0 142.0 0.4507 0.4507 60.0 60.0 118.0 0.5085 0.5085 0.0 0.0 0.0 0.0 0.0
0.0 24.0 48 5.1787 0.0059 4258.6330 2951.8595 363.0 570.0 0.6368 363.0 0.6368 117.0 117.0 158.0 0.7405 0.7405 121.0 121.0 152.0 0.7961 0.7961 64.0 64.0 142.0 0.4507 0.4507 61.0 61.0 118.0 0.5169 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 25.0 50 5.1830 0.0059 4262.1355 2954.2872 364.0 570.0 0.6386 364.0 0.6386 117.0 117.0 158.0 0.7405 0.7405 120.0 120.0 152.0 0.7895 0.7895 66.0 66.0 142.0 0.4648 0.4648 61.0 61.0 118.0 0.5169 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 26.0 52 5.2134 0.0059 4287.1840 2971.6495 366.0 570.0 0.6421 366.0 0.6421 117.0 117.0 158.0 0.7405 0.7405 121.0 121.0 152.0 0.7961 0.7961 66.0 66.0 142.0 0.4648 0.4648 62.0 62.0 118.0 0.5254 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 27.0 54 5.2234 0.0059 4295.3572 2977.3147 363.0 570.0 0.6368 363.0 0.6368 117.0 117.0 158.0 0.7405 0.7405 121.0 121.0 152.0 0.7961 0.7961 64.0 64.0 142.0 0.4507 0.4507 61.0 61.0 118.0 0.5169 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 28.0 56 5.2081 0.0059 4282.7799 2968.5968 363.0 570.0 0.6368 363.0 0.6368 116.0 116.0 158.0 0.7342 0.7342 121.0 121.0 152.0 0.7961 0.7961 66.0 66.0 142.0 0.4648 0.4648 60.0 60.0 118.0 0.5085 0.5085 0.0 0.0 0.0 0.0 0.0
0.0 29.0 58 5.2147 0.0059 4288.2770 2972.4071 363.0 570.0 0.6368 363.0 0.6368 117.0 117.0 158.0 0.7405 0.7405 120.0 120.0 152.0 0.7895 0.7895 65.0 65.0 142.0 0.4577 0.4577 61.0 61.0 118.0 0.5169 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 30.0 60 5.1978 0.0059 4274.3588 2962.7597 364.0 570.0 0.6386 364.0 0.6386 116.0 116.0 158.0 0.7342 0.7342 121.0 121.0 152.0 0.7961 0.7961 65.0 65.0 142.0 0.4577 0.4577 62.0 62.0 118.0 0.5254 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 31.0 62 5.2467 0.0059 4314.5237 2990.5999 362.0 570.0 0.6351 362.0 0.6351 115.0 115.0 158.0 0.7278 0.7278 121.0 121.0 152.0 0.7961 0.7961 65.0 65.0 142.0 0.4577 0.4577 61.0 61.0 118.0 0.5169 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 32.0 64 5.1926 0.0059 4270.0613 2959.7810 364.0 570.0 0.6386 364.0 0.6386 116.0 116.0 158.0 0.7342 0.7342 121.0 121.0 152.0 0.7961 0.7961 67.0 67.0 142.0 0.4718 0.4718 60.0 60.0 118.0 0.5085 0.5085 0.0 0.0 0.0 0.0 0.0
0.0 33.0 66 5.2157 0.0059 4289.0287 2972.9282 362.0 570.0 0.6351 362.0 0.6351 117.0 117.0 158.0 0.7405 0.7405 120.0 120.0 152.0 0.7895 0.7895 64.0 64.0 142.0 0.4507 0.4507 61.0 61.0 118.0 0.5169 0.5169 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
1B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for donoway/ARC-Easy_Llama-3.2-1B-jrm0jamn

Finetuned
(846)
this model

Evaluation results