ARC-Easy_Llama-3.2-1B-qsx0hz5e

This model is a fine-tuned version of meta-llama/Llama-3.2-1B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1509
  • Model Preparation Time: 0.0062
  • Mdl: 946.4028
  • Accumulated Loss: 655.9965
  • Correct Preds: 440.0
  • Total Preds: 570.0
  • Accuracy: 0.7719
  • Correct Gen Preds: 439.0
  • Gen Accuracy: 0.7702
  • Correct Gen Preds 32: 110.0
  • Correct Preds 32: 111.0
  • Total Labels 32: 158.0
  • Accuracy 32: 0.7025
  • Gen Accuracy 32: 0.6962
  • Correct Gen Preds 33: 133.0
  • Correct Preds 33: 133.0
  • Total Labels 33: 152.0
  • Accuracy 33: 0.875
  • Gen Accuracy 33: 0.875
  • Correct Gen Preds 34: 109.0
  • Correct Preds 34: 109.0
  • Total Labels 34: 142.0
  • Accuracy 34: 0.7676
  • Gen Accuracy 34: 0.7676
  • Correct Gen Preds 35: 87.0
  • Correct Preds 35: 87.0
  • Total Labels 35: 118.0
  • Accuracy 35: 0.7373
  • Gen Accuracy 35: 0.7373
  • Correct Gen Preds 36: 0.0
  • Correct Preds 36: 0.0
  • Total Labels 36: 0.0
  • Accuracy 36: 0.0
  • Gen Accuracy 36: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 112
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Mdl Accumulated Loss Correct Preds Total Preds Accuracy Correct Gen Preds Gen Accuracy Correct Gen Preds 32 Correct Preds 32 Total Labels 32 Accuracy 32 Gen Accuracy 32 Correct Gen Preds 33 Correct Preds 33 Total Labels 33 Accuracy 33 Gen Accuracy 33 Correct Gen Preds 34 Correct Preds 34 Total Labels 34 Accuracy 34 Gen Accuracy 34 Correct Gen Preds 35 Correct Preds 35 Total Labels 35 Accuracy 35 Gen Accuracy 35 Correct Gen Preds 36 Correct Preds 36 Total Labels 36 Accuracy 36 Gen Accuracy 36
No log 0 0 1.5354 0.0062 1262.6022 875.1692 172.0 570.0 0.3018 170.0 0.2982 154.0 154.0 158.0 0.9747 0.9747 0.0 0.0 152.0 0.0 0.0 15.0 17.0 142.0 0.1197 0.1056 1.0 1.0 118.0 0.0085 0.0085 0.0 0.0 0.0 0.0 0.0
0.4578 1.0 36 0.7925 0.0062 651.6956 451.7210 390.0 570.0 0.6842 390.0 0.6842 141.0 141.0 158.0 0.8924 0.8924 89.0 89.0 152.0 0.5855 0.5855 81.0 81.0 142.0 0.5704 0.5704 79.0 79.0 118.0 0.6695 0.6695 0.0 0.0 0.0 0.0 0.0
0.3401 2.0 72 0.8064 0.0062 663.1252 459.6433 406.0 570.0 0.7123 405.0 0.7105 135.0 136.0 158.0 0.8608 0.8544 109.0 109.0 152.0 0.7171 0.7171 87.0 87.0 142.0 0.6127 0.6127 74.0 74.0 118.0 0.6271 0.6271 0.0 0.0 0.0 0.0 0.0
0.0029 3.0 108 1.1509 0.0062 946.4028 655.9965 440.0 570.0 0.7719 439.0 0.7702 110.0 111.0 158.0 0.7025 0.6962 133.0 133.0 152.0 0.875 0.875 109.0 109.0 142.0 0.7676 0.7676 87.0 87.0 118.0 0.7373 0.7373 0.0 0.0 0.0 0.0 0.0
0.0039 4.0 144 1.2837 0.0062 1055.6098 731.6930 437.0 570.0 0.7667 436.0 0.7649 113.0 114.0 158.0 0.7215 0.7152 134.0 134.0 152.0 0.8816 0.8816 113.0 113.0 142.0 0.7958 0.7958 76.0 76.0 118.0 0.6441 0.6441 0.0 0.0 0.0 0.0 0.0
0.0011 5.0 180 1.9569 0.0062 1609.2304 1115.4335 422.0 570.0 0.7404 420.0 0.7368 121.0 123.0 158.0 0.7785 0.7658 118.0 118.0 152.0 0.7763 0.7763 105.0 105.0 142.0 0.7394 0.7394 76.0 76.0 118.0 0.6441 0.6441 0.0 0.0 0.0 0.0 0.0
0.0001 6.0 216 1.7405 0.0062 1431.2739 992.0834 429.0 570.0 0.7526 429.0 0.7526 114.0 114.0 158.0 0.7215 0.7215 113.0 113.0 152.0 0.7434 0.7434 110.0 110.0 142.0 0.7746 0.7746 92.0 92.0 118.0 0.7797 0.7797 0.0 0.0 0.0 0.0 0.0
0.0001 7.0 252 2.0143 0.0062 1656.4159 1148.1400 430.0 570.0 0.7544 429.0 0.7526 112.0 113.0 158.0 0.7152 0.7089 115.0 115.0 152.0 0.7566 0.7566 111.0 111.0 142.0 0.7817 0.7817 91.0 91.0 118.0 0.7712 0.7712 0.0 0.0 0.0 0.0 0.0
0.0016 8.0 288 1.8334 0.0062 1507.6687 1045.0363 428.0 570.0 0.7509 427.0 0.7491 125.0 126.0 158.0 0.7975 0.7911 110.0 110.0 152.0 0.7237 0.7237 112.0 112.0 142.0 0.7887 0.7887 80.0 80.0 118.0 0.6780 0.6780 0.0 0.0 0.0 0.0 0.0
0.0 9.0 324 2.7143 0.0062 2232.0899 1547.1668 425.0 570.0 0.7456 425.0 0.7456 106.0 106.0 158.0 0.6709 0.6709 125.0 125.0 152.0 0.8224 0.8224 109.0 109.0 142.0 0.7676 0.7676 85.0 85.0 118.0 0.7203 0.7203 0.0 0.0 0.0 0.0 0.0
0.0 10.0 360 2.6413 0.0062 2171.9994 1505.5152 424.0 570.0 0.7439 424.0 0.7439 114.0 114.0 158.0 0.7215 0.7215 109.0 109.0 152.0 0.7171 0.7171 117.0 117.0 142.0 0.8239 0.8239 84.0 84.0 118.0 0.7119 0.7119 0.0 0.0 0.0 0.0 0.0
0.0 11.0 396 2.7628 0.0062 2271.9653 1574.8063 422.0 570.0 0.7404 422.0 0.7404 125.0 125.0 158.0 0.7911 0.7911 108.0 108.0 152.0 0.7105 0.7105 109.0 109.0 142.0 0.7676 0.7676 80.0 80.0 118.0 0.6780 0.6780 0.0 0.0 0.0 0.0 0.0
0.0 12.0 432 2.7814 0.0062 2287.2186 1585.3792 421.0 570.0 0.7386 421.0 0.7386 124.0 124.0 158.0 0.7848 0.7848 108.0 108.0 152.0 0.7105 0.7105 108.0 108.0 142.0 0.7606 0.7606 81.0 81.0 118.0 0.6864 0.6864 0.0 0.0 0.0 0.0 0.0
0.0 13.0 468 2.7721 0.0062 2279.6203 1580.1124 422.0 570.0 0.7404 422.0 0.7404 125.0 125.0 158.0 0.7911 0.7911 108.0 108.0 152.0 0.7105 0.7105 108.0 108.0 142.0 0.7606 0.7606 81.0 81.0 118.0 0.6864 0.6864 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
1B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for donoway/ARC-Easy_Llama-3.2-1B-qsx0hz5e

Finetuned
(845)
this model

Evaluation results