ARC-Easy_Llama-3.2-1B-qsx0hz5e
This model is a fine-tuned version of meta-llama/Llama-3.2-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1509
- Model Preparation Time: 0.0062
- Mdl: 946.4028
- Accumulated Loss: 655.9965
- Correct Preds: 440.0
- Total Preds: 570.0
- Accuracy: 0.7719
- Correct Gen Preds: 439.0
- Gen Accuracy: 0.7702
- Correct Gen Preds 32: 110.0
- Correct Preds 32: 111.0
- Total Labels 32: 158.0
- Accuracy 32: 0.7025
- Gen Accuracy 32: 0.6962
- Correct Gen Preds 33: 133.0
- Correct Preds 33: 133.0
- Total Labels 33: 152.0
- Accuracy 33: 0.875
- Gen Accuracy 33: 0.875
- Correct Gen Preds 34: 109.0
- Correct Preds 34: 109.0
- Total Labels 34: 142.0
- Accuracy 34: 0.7676
- Gen Accuracy 34: 0.7676
- Correct Gen Preds 35: 87.0
- Correct Preds 35: 87.0
- Total Labels 35: 118.0
- Accuracy 35: 0.7373
- Gen Accuracy 35: 0.7373
- Correct Gen Preds 36: 0.0
- Correct Preds 36: 0.0
- Total Labels 36: 0.0
- Accuracy 36: 0.0
- Gen Accuracy 36: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 112
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.5354 | 0.0062 | 1262.6022 | 875.1692 | 172.0 | 570.0 | 0.3018 | 170.0 | 0.2982 | 154.0 | 154.0 | 158.0 | 0.9747 | 0.9747 | 0.0 | 0.0 | 152.0 | 0.0 | 0.0 | 15.0 | 17.0 | 142.0 | 0.1197 | 0.1056 | 1.0 | 1.0 | 118.0 | 0.0085 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.4578 | 1.0 | 36 | 0.7925 | 0.0062 | 651.6956 | 451.7210 | 390.0 | 570.0 | 0.6842 | 390.0 | 0.6842 | 141.0 | 141.0 | 158.0 | 0.8924 | 0.8924 | 89.0 | 89.0 | 152.0 | 0.5855 | 0.5855 | 81.0 | 81.0 | 142.0 | 0.5704 | 0.5704 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.3401 | 2.0 | 72 | 0.8064 | 0.0062 | 663.1252 | 459.6433 | 406.0 | 570.0 | 0.7123 | 405.0 | 0.7105 | 135.0 | 136.0 | 158.0 | 0.8608 | 0.8544 | 109.0 | 109.0 | 152.0 | 0.7171 | 0.7171 | 87.0 | 87.0 | 142.0 | 0.6127 | 0.6127 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0029 | 3.0 | 108 | 1.1509 | 0.0062 | 946.4028 | 655.9965 | 440.0 | 570.0 | 0.7719 | 439.0 | 0.7702 | 110.0 | 111.0 | 158.0 | 0.7025 | 0.6962 | 133.0 | 133.0 | 152.0 | 0.875 | 0.875 | 109.0 | 109.0 | 142.0 | 0.7676 | 0.7676 | 87.0 | 87.0 | 118.0 | 0.7373 | 0.7373 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0039 | 4.0 | 144 | 1.2837 | 0.0062 | 1055.6098 | 731.6930 | 437.0 | 570.0 | 0.7667 | 436.0 | 0.7649 | 113.0 | 114.0 | 158.0 | 0.7215 | 0.7152 | 134.0 | 134.0 | 152.0 | 0.8816 | 0.8816 | 113.0 | 113.0 | 142.0 | 0.7958 | 0.7958 | 76.0 | 76.0 | 118.0 | 0.6441 | 0.6441 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0011 | 5.0 | 180 | 1.9569 | 0.0062 | 1609.2304 | 1115.4335 | 422.0 | 570.0 | 0.7404 | 420.0 | 0.7368 | 121.0 | 123.0 | 158.0 | 0.7785 | 0.7658 | 118.0 | 118.0 | 152.0 | 0.7763 | 0.7763 | 105.0 | 105.0 | 142.0 | 0.7394 | 0.7394 | 76.0 | 76.0 | 118.0 | 0.6441 | 0.6441 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0001 | 6.0 | 216 | 1.7405 | 0.0062 | 1431.2739 | 992.0834 | 429.0 | 570.0 | 0.7526 | 429.0 | 0.7526 | 114.0 | 114.0 | 158.0 | 0.7215 | 0.7215 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 110.0 | 110.0 | 142.0 | 0.7746 | 0.7746 | 92.0 | 92.0 | 118.0 | 0.7797 | 0.7797 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0001 | 7.0 | 252 | 2.0143 | 0.0062 | 1656.4159 | 1148.1400 | 430.0 | 570.0 | 0.7544 | 429.0 | 0.7526 | 112.0 | 113.0 | 158.0 | 0.7152 | 0.7089 | 115.0 | 115.0 | 152.0 | 0.7566 | 0.7566 | 111.0 | 111.0 | 142.0 | 0.7817 | 0.7817 | 91.0 | 91.0 | 118.0 | 0.7712 | 0.7712 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0016 | 8.0 | 288 | 1.8334 | 0.0062 | 1507.6687 | 1045.0363 | 428.0 | 570.0 | 0.7509 | 427.0 | 0.7491 | 125.0 | 126.0 | 158.0 | 0.7975 | 0.7911 | 110.0 | 110.0 | 152.0 | 0.7237 | 0.7237 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 9.0 | 324 | 2.7143 | 0.0062 | 2232.0899 | 1547.1668 | 425.0 | 570.0 | 0.7456 | 425.0 | 0.7456 | 106.0 | 106.0 | 158.0 | 0.6709 | 0.6709 | 125.0 | 125.0 | 152.0 | 0.8224 | 0.8224 | 109.0 | 109.0 | 142.0 | 0.7676 | 0.7676 | 85.0 | 85.0 | 118.0 | 0.7203 | 0.7203 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 10.0 | 360 | 2.6413 | 0.0062 | 2171.9994 | 1505.5152 | 424.0 | 570.0 | 0.7439 | 424.0 | 0.7439 | 114.0 | 114.0 | 158.0 | 0.7215 | 0.7215 | 109.0 | 109.0 | 152.0 | 0.7171 | 0.7171 | 117.0 | 117.0 | 142.0 | 0.8239 | 0.8239 | 84.0 | 84.0 | 118.0 | 0.7119 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 11.0 | 396 | 2.7628 | 0.0062 | 2271.9653 | 1574.8063 | 422.0 | 570.0 | 0.7404 | 422.0 | 0.7404 | 125.0 | 125.0 | 158.0 | 0.7911 | 0.7911 | 108.0 | 108.0 | 152.0 | 0.7105 | 0.7105 | 109.0 | 109.0 | 142.0 | 0.7676 | 0.7676 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 12.0 | 432 | 2.7814 | 0.0062 | 2287.2186 | 1585.3792 | 421.0 | 570.0 | 0.7386 | 421.0 | 0.7386 | 124.0 | 124.0 | 158.0 | 0.7848 | 0.7848 | 108.0 | 108.0 | 152.0 | 0.7105 | 0.7105 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 81.0 | 81.0 | 118.0 | 0.6864 | 0.6864 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 13.0 | 468 | 2.7721 | 0.0062 | 2279.6203 | 1580.1124 | 422.0 | 570.0 | 0.7404 | 422.0 | 0.7404 | 125.0 | 125.0 | 158.0 | 0.7911 | 0.7911 | 108.0 | 108.0 | 152.0 | 0.7105 | 0.7105 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 81.0 | 81.0 | 118.0 | 0.6864 | 0.6864 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Model tree for donoway/ARC-Easy_Llama-3.2-1B-qsx0hz5e
Base model
meta-llama/Llama-3.2-1B