YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
haznitrama/babybabellm-gpt_bert-ace-causal
GPT-BERT style BabyBabyLLM monolingual model for language ace.
This repository mirrors the layout of the multi-all reference models: it may contain both main and EMA variants.
Default variant exposed to generic loaders: ema
Variants Available
ema, main
Files
- model.safetensors (alias of default variant)
- model_ema.safetensors
- pytorch_model.bin (legacy PyTorch format)
Configuration
{
"attention_probs_dropout_prob": 0.1,
"hidden_dropout_prob": 0.1,
"hidden_size": 384,
"intermediate_size": 1280,
"max_position_embeddings": 512,
"position_bucket_size": 32,
"num_attention_heads": 6,
"num_hidden_layers": 12,
"vocab_size": 8192,
"layer_norm_eps": 1e-05,
"auto_map": {
"AutoConfig": "configuration_gpt_bert.GPTBertConfig",
"AutoModel": "modeling_gpt_bert.GPTBertForMaskedLM",
"AutoModelForCausalLM": "modeling_gpt_bert.GPTBertForMaskedLM",
"AutoModelForMaskedLM": "modeling_gpt_bert.GPTBertForMaskedLM"
},
"return_dict": true,
"output_hidden_states": false,
"torchscript": false,
"dtype": "float32",
"pruned_heads": {},
"tie_word_embeddings": true,
"chunk_size_feed_forward": 0,
"is_encoder_decoder": false,
"is_decoder": false,
"cross_attention_hidden_size": null,
"add_cross_attention": false,
"tie_encoder_decoder": false,
"architectures": [
"GPTBertForMaskedLM"
],
"finetuning_task": null,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"task_specific_params": null,
"problem_type": null,
"tokenizer_class": null,
"prefix": null,
"bos_token_id": null,
"pad_token_id": null,
"eos_token_id": null,
"sep_token_id": null,
"decoder_start_token_id": null,
"max_length": 20,
"min_length": 0,
"do_sample": false,
"early_stopping": false,
"num_beams": 1,
"num_beam_groups": 1,
"diversity_penalty": 0.0,
"temperature": 1.0,
"top_k": 50,
"top_p": 1.0,
"typical_p": 1.0,
"repetition_penalty": 1.0,
"length_penalty": 1.0,
"no_repeat_ngram_size": 0,
"encoder_no_repeat_ngram_size": 0,
"bad_words_ids": null,
"num_return_sequences": 1,
"output_scores": false,
"return_dict_in_generate": false,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"remove_invalid_values": false,
"exponential_decay_length_penalty": null,
"suppress_tokens": null,
"begin_suppress_tokens": null,
"_name_or_path": "",
"transformers_version": "4.56.1",
"tf_legacy_loss": false,
"use_bfloat16": false,
"model_type": "gpt_bert",
"output_attentions": false
}
Tokenizer file: tokenizer_ace_vs8192.json
Quick Usage
from transformers import AutoTokenizer, AutoModelForMaskedLM
model_id = 'haznitrama/babybabellm-gpt_bert-ace-causal'
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(model_id, trust_remote_code=True)
out = model(**tok('Hello world', return_tensors='pt'))
Select a specific variant explicitly (when both present):
# Load EMA weights explicitly if both are present
from safetensors.torch import load_file
import torch
from transformers import AutoConfig, AutoModelForMaskedLM
model_id = 'haznitrama/babybabellm-gpt_bert-ace-causal'
config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForMaskedLM.from_config(config, trust_remote_code=True)
state_dict = torch.load('pytorch_model.bin') # or load_file('model_ema.safetensors')
model.load_state_dict(state_dict, strict=False)
Causal LM Wrapper
This repo includes a lightweight GPTBertForCausalLM wrapper. Generation example:
from transformers import AutoTokenizer, AutoModelForCausalLM
mid='haznitrama/babybabellm-gpt_bert-ace-causal'
tok=AutoTokenizer.from_pretrained(mid)
model=AutoModelForCausalLM.from_pretrained(mid, trust_remote_code=True)
print(tok.decode(model.generate(**tok('Hello', return_tensors='pt'), max_new_tokens=20)[0], skip_special_tokens=True))
Notes
- Converted on 2025-09-16T06:33:47.735811Z
- Safe serialization (safetensors) used;
pytorch_model.binadded for legacy tools. - Requires
trust_remote_code=Truedue to custom architecture. - EMA (Exponential Moving Average) weights can yield slightly better evaluation metrics; choose according to your needs.
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support