CrossEncoder
This is a Cross Encoder model trained on the msmarco dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
- Training Dataset:
- Language: en
Model Sources
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
model = CrossEncoder("kselight/123BERT")
pairs = [
['what is ivana trump', 'The need for an independent investigation. As it stands, all three men in charge of the investigations into the Trump campaign are Republicans, and two of the three are vociferous Trump allies. Burr, the third, also tied himself to Trump during his close 2016 reelection campaign.'],
["hogan's goat meaning", 'hoganâ\x80\x99s goat. The phrase like Hoganâ\x80\x99s goat refers to something that is faulty, messed up, or stinks like a goat. The phrase is a reference to R.F. Outcaultâ\x80\x99s seminal newspaper comic Hoganâ\x80\x99s Alley, which debuted in 1895. The title of the strip changed to The Yellow Kid the following year.'],
['who made tokyo ghoul', "Tokyo Ghoul (Japanese: æ\x9d±äº¬å\x96°ç¨®ï¼\x88ã\x83\x88ã\x83¼ã\x82\xadã\x83§ã\x83¼ã\x82°ã\x83¼ã\x83«ï¼\x89, Hepburn: TÅ\x8dkyÅ\x8d GÅ«ru) is a Japanese manga series by Sui Ishida. It was serialized in Shueisha's seinen manga magazine Weekly Young Jump between September 2011 and September 2014 and has been collected in fourteen tankÅ\x8dbon volumes as of August 2014."],
['neck of the scottie dog', 'Classical guitars. The classical guitar neck blank is relatively small compared to what is needed for construction. This is because a classical neck is constructed differently than most other neck designs. The heel of the neck is built up by stacking blocks of wood to achieve the necessary height.'],
['what does bicameral mean in government', 'Top 10 amazing movie makeup transformations. In government, bicameralism is the practice of having two legislative or parliamentary chambers. The relationship between the two chambers of a bicameral legislature can vary. In some cases, they have equal power, and in others, one chamber is clearly superior to the other. It is commonplace in most federal systems to have a bicameral legislature.'],
]
scores = model.predict(pairs)
print(scores.shape)
ranks = model.rank(
'what is ivana trump',
[
'The need for an independent investigation. As it stands, all three men in charge of the investigations into the Trump campaign are Republicans, and two of the three are vociferous Trump allies. Burr, the third, also tied himself to Trump during his close 2016 reelection campaign.',
'hoganâ\x80\x99s goat. The phrase like Hoganâ\x80\x99s goat refers to something that is faulty, messed up, or stinks like a goat. The phrase is a reference to R.F. Outcaultâ\x80\x99s seminal newspaper comic Hoganâ\x80\x99s Alley, which debuted in 1895. The title of the strip changed to The Yellow Kid the following year.',
"Tokyo Ghoul (Japanese: æ\x9d±äº¬å\x96°ç¨®ï¼\x88ã\x83\x88ã\x83¼ã\x82\xadã\x83§ã\x83¼ã\x82°ã\x83¼ã\x83«ï¼\x89, Hepburn: TÅ\x8dkyÅ\x8d GÅ«ru) is a Japanese manga series by Sui Ishida. It was serialized in Shueisha's seinen manga magazine Weekly Young Jump between September 2011 and September 2014 and has been collected in fourteen tankÅ\x8dbon volumes as of August 2014.",
'Classical guitars. The classical guitar neck blank is relatively small compared to what is needed for construction. This is because a classical neck is constructed differently than most other neck designs. The heel of the neck is built up by stacking blocks of wood to achieve the necessary height.',
'Top 10 amazing movie makeup transformations. In government, bicameralism is the practice of having two legislative or parliamentary chambers. The relationship between the two chambers of a bicameral legislature can vary. In some cases, they have equal power, and in others, one chamber is clearly superior to the other. It is commonplace in most federal systems to have a bicameral legislature.',
]
)
Evaluation
Metrics
Cross Encoder Reranking
| Metric |
NanoMSMARCO_R100 |
NanoNFCorpus_R100 |
NanoNQ_R100 |
| map |
0.0579 (-0.4317) |
0.2867 (+0.0257) |
0.0326 (-0.3870) |
| mrr@10 |
0.0329 (-0.4446) |
0.4222 (-0.0777) |
0.0100 (-0.4167) |
| ndcg@10 |
0.0479 (-0.4925) |
0.2546 (-0.0705) |
0.0229 (-0.4778) |
Cross Encoder Nano BEIR
- Dataset:
NanoBEIR_R100_mean
- Evaluated with
CrossEncoderNanoBEIREvaluator with these parameters:{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
| Metric |
Value |
| map |
0.1257 (-0.2643) |
| mrr@10 |
0.1550 (-0.3130) |
| ndcg@10 |
0.1084 (-0.3469) |
Training Details
Training Dataset
msmarco
Evaluation Dataset
msmarco
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
learning_rate: 8e-06
num_train_epochs: 1
warmup_ratio: 0.1
seed: 12
dataloader_num_workers: 4
load_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 8e-06
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 12
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 4
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
NanoMSMARCO_R100_ndcg@10 |
NanoNFCorpus_R100_ndcg@10 |
NanoNQ_R100_ndcg@10 |
NanoBEIR_R100_mean_ndcg@10 |
| -1 |
-1 |
- |
0.0479 (-0.4925) |
0.2546 (-0.0705) |
0.0229 (-0.4778) |
0.1084 (-0.3469) |
| 0.0064 |
1 |
53.6175 |
- |
- |
- |
- |
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 5.1.1
- Transformers: 4.47.1
- PyTorch: 2.4.0+cu124
- Accelerate: 1.5.1
- Datasets: 3.3.2
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}