YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
SAM3 Blood Vessel Segmentation
Fine-tuned SAM3 model for blood vessel angiography segmentation.
Model Performance
| Model | Dice | IoU | Recall |
|---|---|---|---|
| Original SAM3 | 0.00 | 0.00 | 0.00 |
| Baseline (5 epochs) | 0.79 | 0.66 | 0.73 |
| Dice Optimized (10 epochs) | 0.82 | 0.69 | 0.77 |
| Dice Optimized + Post-processing | 0.83 | 0.70 | 0.78 |
Files
checkpoint_dice_optimized.pt- Recommended - Dice optimized modelcheckpoint_baseline.pt- Baseline fine-tuned modelsam3_original.pt- Original SAM3 weights
Usage
from huggingface_hub import hf_hub_download
import torch
from sam3.model_builder import build_sam3_image_model
from sam3.model.sam3_image_processor import Sam3Processor
# Download weights
checkpoint = hf_hub_download(
repo_id="qimingfan10/sam3-vessel-segmentation",
filename="checkpoint_dice_optimized.pt"
)
# Load model
model = build_sam3_image_model(
checkpoint_path="path/to/sam3_original.pt",
enable_segmentation=True,
device="cuda"
)
# Load fine-tuned weights
ckpt = torch.load(checkpoint, map_location="cuda")
state_dict = {k.replace('module.', ''): v for k, v in ckpt['model'].items()}
model.load_state_dict(state_dict, strict=False)
model.eval()
# Inference
processor = Sam3Processor(model)
state = processor.set_image(image)
output = processor.set_text_prompt(state=state, prompt="blood vessel")
masks = output["masks"]
Training
See VESSEL_SEGMENTATION_GUIDE.md for training details.
Citation
Please cite SAM3 if you use this model.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support