BiseNet: Optimized for Mobile Deployment

Segment images or video by class in real-time on device

BiSeNet (Bilateral Segmentation Network) is a novel architecture designed for real-time semantic segmentation. It addresses the challenge of balancing spatial resolution and receptive field by employing a Spatial Path to preserve high-resolution features and a context path to capture sufficient receptive field.

This model is an implementation of BiseNet found here.

This repository provides scripts to run BiseNet on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.semantic_segmentation
  • Model Stats:
    • Model checkpoint: best_dice_loss_miou_0.655.pth
    • Inference latency: RealTime
    • Input resolution: 720x960
    • Number of parameters: 12.0M
    • Model size (float): 45.7 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
BiseNet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 133.376 ms 32 - 69 MB NPU BiseNet.tflite
BiseNet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 111.86 ms 3 - 75 MB NPU BiseNet.dlc
BiseNet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 55.56 ms 32 - 79 MB NPU BiseNet.tflite
BiseNet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 63.236 ms 8 - 60 MB NPU BiseNet.dlc
BiseNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 46.549 ms 32 - 49 MB NPU BiseNet.tflite
BiseNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 32.723 ms 8 - 26 MB NPU BiseNet.dlc
BiseNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 33.304 ms 63 - 122 MB NPU BiseNet.onnx.zip
BiseNet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 56.389 ms 32 - 69 MB NPU BiseNet.tflite
BiseNet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 41.608 ms 2 - 73 MB NPU BiseNet.dlc
BiseNet float SA7255P ADP Qualcomm® SA7255P TFLITE 133.376 ms 32 - 69 MB NPU BiseNet.tflite
BiseNet float SA7255P ADP Qualcomm® SA7255P QNN_DLC 111.86 ms 3 - 75 MB NPU BiseNet.dlc
BiseNet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 46.029 ms 20 - 38 MB NPU BiseNet.tflite
BiseNet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 32.78 ms 8 - 28 MB NPU BiseNet.dlc
BiseNet float SA8295P ADP Qualcomm® SA8295P TFLITE 61.008 ms 32 - 74 MB NPU BiseNet.tflite
BiseNet float SA8295P ADP Qualcomm® SA8295P QNN_DLC 47.183 ms 6 - 56 MB NPU BiseNet.dlc
BiseNet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 46.075 ms 20 - 38 MB NPU BiseNet.tflite
BiseNet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 33.258 ms 8 - 31 MB NPU BiseNet.dlc
BiseNet float SA8775P ADP Qualcomm® SA8775P TFLITE 56.389 ms 32 - 69 MB NPU BiseNet.tflite
BiseNet float SA8775P ADP Qualcomm® SA8775P QNN_DLC 41.608 ms 2 - 73 MB NPU BiseNet.dlc
BiseNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 31.893 ms 31 - 76 MB NPU BiseNet.tflite
BiseNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 24.512 ms 8 - 66 MB NPU BiseNet.dlc
BiseNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 26.227 ms 73 - 129 MB NPU BiseNet.onnx.zip
BiseNet float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 26.62 ms 30 - 73 MB NPU BiseNet.tflite
BiseNet float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 20.068 ms 8 - 77 MB NPU BiseNet.dlc
BiseNet float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 19.324 ms 65 - 121 MB NPU BiseNet.onnx.zip
BiseNet float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 22.725 ms 31 - 73 MB NPU BiseNet.tflite
BiseNet float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 17.424 ms 8 - 79 MB NPU BiseNet.dlc
BiseNet float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 15.303 ms 73 - 136 MB NPU BiseNet.onnx.zip
BiseNet float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 31.161 ms 8 - 8 MB NPU BiseNet.dlc
BiseNet float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 31.68 ms 66 - 66 MB NPU BiseNet.onnx.zip
BiseNet w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 24.46 ms 8 - 46 MB NPU BiseNet.tflite
BiseNet w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 21.383 ms 2 - 55 MB NPU BiseNet.dlc
BiseNet w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 16.485 ms 8 - 70 MB NPU BiseNet.tflite
BiseNet w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 18.298 ms 2 - 69 MB NPU BiseNet.dlc
BiseNet w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 15.023 ms 8 - 19 MB NPU BiseNet.tflite
BiseNet w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 10.391 ms 2 - 20 MB NPU BiseNet.dlc
BiseNet w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 10.428 ms 8 - 55 MB NPU BiseNet.onnx.zip
BiseNet w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 14.981 ms 8 - 46 MB NPU BiseNet.tflite
BiseNet w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 11.001 ms 2 - 53 MB NPU BiseNet.dlc
BiseNet w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 54.89 ms 8 - 68 MB NPU BiseNet.tflite
BiseNet w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 55.786 ms 2 - 87 MB NPU BiseNet.dlc
BiseNet w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) ONNX 220.532 ms 206 - 219 MB CPU BiseNet.onnx.zip
BiseNet w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 287.541 ms 8 - 11 MB NPU BiseNet.tflite
BiseNet w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 194.766 ms 198 - 224 MB CPU BiseNet.onnx.zip
BiseNet w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 24.46 ms 8 - 46 MB NPU BiseNet.tflite
BiseNet w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 21.383 ms 2 - 55 MB NPU BiseNet.dlc
BiseNet w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 14.51 ms 8 - 24 MB NPU BiseNet.tflite
BiseNet w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 10.358 ms 2 - 23 MB NPU BiseNet.dlc
BiseNet w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 17.559 ms 8 - 50 MB NPU BiseNet.tflite
BiseNet w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 13.553 ms 2 - 56 MB NPU BiseNet.dlc
BiseNet w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 14.662 ms 7 - 22 MB NPU BiseNet.tflite
BiseNet w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 10.396 ms 2 - 21 MB NPU BiseNet.dlc
BiseNet w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 14.981 ms 8 - 46 MB NPU BiseNet.tflite
BiseNet w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 11.001 ms 2 - 53 MB NPU BiseNet.dlc
BiseNet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 10.798 ms 6 - 64 MB NPU BiseNet.tflite
BiseNet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 7.441 ms 2 - 75 MB NPU BiseNet.dlc
BiseNet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 7.523 ms 18 - 88 MB NPU BiseNet.onnx.zip
BiseNet w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 8.284 ms 7 - 50 MB NPU BiseNet.tflite
BiseNet w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 5.769 ms 2 - 61 MB NPU BiseNet.dlc
BiseNet w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 5.705 ms 16 - 74 MB NPU BiseNet.onnx.zip
BiseNet w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile TFLITE 20.504 ms 0 - 53 MB NPU BiseNet.tflite
BiseNet w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile QNN_DLC 16.35 ms 2 - 72 MB NPU BiseNet.dlc
BiseNet w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 213.382 ms 212 - 227 MB CPU BiseNet.onnx.zip
BiseNet w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 7.193 ms 6 - 48 MB NPU BiseNet.tflite
BiseNet w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 4.903 ms 2 - 65 MB NPU BiseNet.dlc
BiseNet w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 4.539 ms 18 - 85 MB NPU BiseNet.onnx.zip
BiseNet w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 10.918 ms 11 - 11 MB NPU BiseNet.dlc
BiseNet w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 10.927 ms 19 - 19 MB NPU BiseNet.onnx.zip

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.bisenet.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.bisenet.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.bisenet.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.bisenet import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.bisenet.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.bisenet.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on BiseNet's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of BiseNet can be found [here](This model's original implementation does not provide a LICENSE.).
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month
216
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support