File size: 16,182 Bytes
98c7b52 6e85785 98c7b52 6e85785 98c7b52 6e85785 98c7b52 6e85785 98c7b52 6e85785 98c7b52 6e85785 82a6cd8 6e85785 98c7b52 6e85785 98c7b52 6e85785 98c7b52 6e85785 98c7b52 6e85785 98c7b52 6e85785 98c7b52 6e85785 98c7b52 6e85785 82a6cd8 6e85785 82a6cd8 6e85785 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2
print("🚀 Starting SAM2 App v2.1 - OPTIMIZED...")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"📱 Using device: {device}")
model = None
processor = None
def load_model():
global model, processor
if model is None:
print("📦 Loading SAM model...")
try:
from transformers import SamModel, SamProcessor
model_name = "facebook/sam-vit-large"
processor = SamProcessor.from_pretrained(model_name)
model = SamModel.from_pretrained(model_name)
model.to(device)
print(f"✅ Model loaded: {model_name}")
except Exception as e:
print(f"❌ Error: {e}, falling back to base model")
model_name = "facebook/sam-vit-base"
processor = SamProcessor.from_pretrained(model_name)
model = SamModel.from_pretrained(model_name)
model.to(device)
return model, processor
def prepare_image(image, max_size=1024):
if isinstance(image, np.ndarray):
image_pil = Image.fromarray(image)
else:
image_pil = image
if image_pil.mode != 'RGB':
image_pil = image_pil.convert('RGB')
image_np = np.array(image_pil)
h, w = image_np.shape[:2]
if max(h, w) > max_size:
scale = max_size / max(h, w)
new_h, new_w = int(h * scale), int(w * scale)
image_pil = image_pil.resize((new_w, new_h), Image.Resampling.LANCZOS)
image_np = np.array(image_pil)
return image_pil, image_np
def refine_mask(mask, kernel_size=5):
"""Glättet Maskenkanten"""
mask_uint8 = (mask > 0).astype(np.uint8) * 255
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
mask_closed = cv2.morphologyEx(mask_uint8, cv2.MORPH_CLOSE, kernel)
mask_refined = cv2.morphologyEx(mask_closed, cv2.MORPH_OPEN, kernel)
return mask_refined > 0
def segment_automatic(image, quality="high", merge_parts=True):
"""
OPTIMIERTE Automatische Segmentierung
Schnell & präzise - kombiniert mehrere Masken
"""
if image is None:
return None, {"error": "Kein Bild hochgeladen"}
try:
print(f"🔄 Starting segmentation (quality: {quality}, merge: {merge_parts})...")
model, processor = load_model()
image_pil, image_np = prepare_image(image)
h, w = image_np.shape[:2]
center_x, center_y = w // 2, h // 2
# Single point inference mit multimask_output
inputs = processor(
image_pil,
input_points=[[[center_x, center_y]]],
input_labels=[[1]],
return_tensors="pt"
).to(device)
print("🧠 Running inference...")
with torch.no_grad():
outputs = model(**inputs, multimask_output=True)
masks = processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0]
scores = outputs.iou_scores.cpu().numpy()
if scores.ndim > 1:
scores = scores.flatten()
print(f"✅ Got {len(scores)} masks with scores: {scores}")
# SMART MERGING: Kombiniere alle guten Masken
if merge_parts:
combined_mask = np.zeros((h, w), dtype=bool)
masks_used = 0
for idx, score in enumerate(scores):
if score > 0.5: # Nur Masken mit gutem Score
if masks.ndim == 4:
mask = masks[0, idx].numpy()
else:
mask = masks[idx].numpy()
# OR-Kombination (super schnell!)
combined_mask = combined_mask | (mask > 0)
masks_used += 1
print(f" ✅ Added mask {idx} (score: {score:.3f})")
final_mask = combined_mask
print(f"🔗 Combined {masks_used} masks into one!")
else:
# Nur beste Maske
best_idx = np.argmax(scores)
if masks.ndim == 4:
final_mask = masks[0, best_idx].numpy() > 0
else:
final_mask = masks[best_idx].numpy() > 0
masks_used = 1
print(f"✅ Using best mask (score: {scores[best_idx]:.3f})")
# Refinement für glatte Kanten
if quality == "high":
print("🎨 Refining mask...")
final_mask = refine_mask(final_mask, kernel_size=7)
# Overlay erstellen
overlay = image_np.copy()
color = np.array([255, 80, 180]) # Rosa/Pink
mask_float = final_mask.astype(float)
if quality == "high":
mask_float = cv2.GaussianBlur(mask_float, (5, 5), 0)
# Farbiges Overlay
for c in range(3):
overlay[:, :, c] = (
overlay[:, :, c] * (1 - mask_float * 0.65) +
color[c] * mask_float * 0.65
)
# Gelbe Kontur zeichnen
contours, _ = cv2.findContours(
final_mask.astype(np.uint8),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE
)
cv2.drawContours(overlay, contours, -1, (255, 255, 0), 3)
metadata = {
"success": True,
"mode": "automatic_plus" if merge_parts else "automatic",
"quality": quality,
"masks_combined": masks_used,
"all_scores": scores.tolist(),
"image_size": [w, h],
"mask_area": int(np.sum(final_mask)),
"mask_percentage": float(np.sum(final_mask) / (h * w) * 100),
"num_contours": len(contours),
"device": device
}
print("✅ Segmentation complete!")
return Image.fromarray(overlay.astype(np.uint8)), metadata
except Exception as e:
import traceback
print(f"❌ ERROR:\n{traceback.format_exc()}")
return image, {"error": str(e)}
def segment_multi_dense(image, density="medium"):
"""Multi-Object Segmentierung mit Grid"""
if image is None:
return None, {"error": "Kein Bild"}
try:
print(f"🎯 Starting multi-region segmentation (density: {density})...")
model, processor = load_model()
image_pil, image_np = prepare_image(image)
h, w = image_np.shape[:2]
# Grid-Größe basierend auf Density
if density == "high":
grid_size = 5
elif density == "medium":
grid_size = 4
else:
grid_size = 3
# Grid-Punkte generieren
points = []
for i in range(1, grid_size + 1):
for j in range(1, grid_size + 1):
x = int(w * i / (grid_size + 1))
y = int(h * j / (grid_size + 1))
points.append([x, y])
print(f"📍 Using {len(points)} grid points ({grid_size}x{grid_size})...")
all_masks = []
all_scores = []
# Segmentiere jeden Punkt
for idx, point in enumerate(points):
inputs = processor(
image_pil,
input_points=[[point]],
input_labels=[[1]],
return_tensors="pt"
).to(device)
with torch.no_grad():
outputs = model(**inputs, multimask_output=True)
masks = processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0]
scores = outputs.iou_scores.cpu().numpy().flatten()
best_idx = np.argmax(scores)
if masks.ndim == 4:
mask = masks[0, best_idx].numpy()
else:
mask = masks[best_idx].numpy()
# Nur Masken mit gutem Score
if scores[best_idx] > 0.7:
all_masks.append(refine_mask(mask))
all_scores.append(scores[best_idx])
print(f"✅ Got {len(all_masks)} quality masks")
# Overlay mit verschiedenen Farben
overlay = image_np.copy()
# HSV-basierte Farbgenerierung
colors = []
for i in range(len(all_masks)):
hue = int(180 * i / max(len(all_masks), 1))
color_hsv = np.uint8([[[hue, 255, 200]]])
color_rgb = cv2.cvtColor(color_hsv, cv2.COLOR_HSV2RGB)[0][0]
colors.append(color_rgb)
# Masken anwenden
for mask, color, score in zip(all_masks, colors, all_scores):
alpha = 0.4 + (score - 0.7) * 0.2 # Höherer Score = stärkere Farbe
overlay[mask] = (
overlay[mask] * (1 - alpha) +
np.array(color) * alpha
).astype(np.uint8)
# Kontur
contours, _ = cv2.findContours(
mask.astype(np.uint8),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE
)
cv2.drawContours(overlay, contours, -1, color.tolist(), 2)
metadata = {
"success": True,
"mode": "multi_object_dense",
"density": density,
"grid_size": f"{grid_size}x{grid_size}",
"total_points": len(points),
"quality_masks": len(all_masks),
"avg_score": float(np.mean(all_scores)) if all_scores else 0,
"scores": [float(s) for s in all_scores]
}
print("✅ Multi-region complete!")
return Image.fromarray(overlay), metadata
except Exception as e:
import traceback
print(f"❌ ERROR:\n{traceback.format_exc()}")
return image, {"error": str(e)}
# Gradio Interface
demo = gr.Blocks(title="SAM2 Boostly", theme=gr.themes.Soft())
with demo:
gr.Markdown("# 🎨 SAM2 Segmentierung - Boostly Edition")
gr.Markdown("### ⚡ Optimierte Zero-Shot Object Segmentation")
with gr.Tab("🤖 Automatisch PLUS"):
gr.Markdown("**Smart Multi-Mask Combining** - Kombiniert automatisch alle Objektteile!")
with gr.Row():
with gr.Column():
input_auto = gr.Image(type="pil", label="📸 Bild hochladen")
quality_radio = gr.Radio(
choices=["high", "fast"],
value="high",
label="⚙️ Qualität",
info="High = präzisere Kanten, Fast = schneller"
)
merge_checkbox = gr.Checkbox(
value=True,
label="🔗 Teile zusammenfügen",
info="Kombiniert alle erkannten Bereiche (Fisch + Flosse = 1 Objekt)"
)
btn_auto = gr.Button("🚀 Segmentieren", variant="primary", size="lg")
gr.Markdown("""
**✨ Funktionsweise:**
- SAM generiert 3 verschiedene Masken
- Wenn "Teile zusammenfügen" AN: Alle kombiniert → vollständiges Objekt
- Wenn AUS: Nur präziseste Maske
- ⚡ Optimiert: ~10-30 Sekunden statt 25 Minuten!
""")
with gr.Column():
output_auto = gr.Image(label="✨ Segmentiertes Bild")
json_auto = gr.JSON(label="📊 Metadata")
btn_auto.click(
fn=segment_automatic,
inputs=[input_auto, quality_radio, merge_checkbox],
outputs=[output_auto, json_auto]
)
gr.Examples(
examples=[],
inputs=input_auto,
label="💡 Tipp: Objekt sollte zentral im Bild sein"
)
with gr.Tab("🎯 Multi-Region"):
gr.Markdown("**Grid-basierte Segmentierung** - Für mehrere separate Objekte")
with gr.Row():
with gr.Column():
input_multi = gr.Image(type="pil", label="📸 Bild hochladen")
density_radio = gr.Radio(
choices=["high", "medium", "low"],
value="medium",
label="📊 Punkt-Dichte",
info="Mehr Punkte = mehr Details, aber langsamer"
)
btn_multi = gr.Button("🎯 Alle Bereiche segmentieren", variant="primary", size="lg")
gr.Markdown("""
**Grid-Größen:**
- 🔥 High: 5x5 = 25 Erkennungspunkte
- ⚡ Medium: 4x4 = 16 Punkte (empfohlen)
- 💨 Low: 3x3 = 9 Punkte
Jedes Objekt bekommt eigene Farbe!
""")
with gr.Column():
output_multi = gr.Image(label="✨ Segmentiertes Bild")
json_multi = gr.JSON(label="📊 Metadata")
btn_multi.click(
fn=segment_multi_dense,
inputs=[input_multi, density_radio],
outputs=[output_multi, json_multi]
)
with gr.Tab("📡 API Dokumentation"):
gr.Markdown("### 🔗 API Endpoint")
gr.Code(
"https://EnginDev-Boostly.hf.space/api/predict",
label="Base URL"
)
gr.Markdown("### 📝 JavaScript Integration (für Lovable)")
gr.Code('''
// Segmentation Service
const HUGGINGFACE_API = 'https://EnginDev-Boostly.hf.space';
async function segmentImage(imageFile, mode = 'automatic') {
// File zu Base64 konvertieren
const base64 = await new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result);
reader.readAsDataURL(imageFile);
});
// API Call
const response = await fetch(`${HUGGINGFACE_API}/api/predict`, {
method: 'POST',
headers: {'Content-Type': 'application/json'},
body: JSON.stringify({
data: [base64, "high", true], // [image, quality, merge]
fn_index: mode === 'automatic' ? 0 : 1
})
});
const result = await response.json();
return {
segmentedImage: result.data[0], // Base64 segmentiertes Bild
metadata: result.data[1] // JSON mit Details
};
}
// Verwendung:
const result = await segmentImage(myImageFile, 'automatic');
console.log('Mask covers:', result.metadata.mask_percentage + '%');
''', language="javascript")
gr.Markdown("### ⚙️ Parameter")
gr.Markdown("""
**fn_index:**
- `0` = Automatisch PLUS (empfohlen für einzelne Objekte)
- `1` = Multi-Region (für mehrere Objekte)
**quality:**
- `"high"` = Präzise Kanten, Gaussian Blur, Refinement (~20-30s)
- `"fast"` = Schneller, weniger Nachbearbeitung (~10-15s)
**merge (nur fn_index=0):**
- `true` = Kombiniert alle Masken → vollständiges Objekt
- `false` = Nur beste Maske → nur Hauptteil
**density (nur fn_index=1):**
- `"high"` = 5x5 Grid = 25 Punkte
- `"medium"` = 4x4 Grid = 16 Punkte
- `"low"` = 3x3 Grid = 9 Punkte
""")
gr.Markdown("### 📊 Response Format")
gr.Code('''
{
"data": [
"...", // Segmentiertes Bild
{
"success": true,
"mode": "automatic_plus",
"masks_combined": 3,
"mask_percentage": 12.5,
"num_contours": 1,
"all_scores": [0.998, 0.583, 0.864]
}
]
}
''', language="json")
if __name__ == "__main__":
print("🌐 Launching Boostly SAM2 v2.1...")
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True) |