File size: 16,182 Bytes
98c7b52
 
 
6e85785
 
98c7b52
6e85785
98c7b52
6e85785
 
98c7b52
6e85785
 
98c7b52
6e85785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c7b52
6e85785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82a6cd8
6e85785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c7b52
 
 
6e85785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c7b52
6e85785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c7b52
6e85785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c7b52
6e85785
 
98c7b52
6e85785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c7b52
6e85785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c7b52
6e85785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82a6cd8
6e85785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82a6cd8
6e85785
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2

print("🚀 Starting SAM2 App v2.1 - OPTIMIZED...")

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"📱 Using device: {device}")

model = None
processor = None

def load_model():
    global model, processor
    if model is None:
        print("📦 Loading SAM model...")
        try:
            from transformers import SamModel, SamProcessor
            
            model_name = "facebook/sam-vit-large"
            
            processor = SamProcessor.from_pretrained(model_name)
            model = SamModel.from_pretrained(model_name)
            model.to(device)
            print(f"✅ Model loaded: {model_name}")
        except Exception as e:
            print(f"❌ Error: {e}, falling back to base model")
            model_name = "facebook/sam-vit-base"
            processor = SamProcessor.from_pretrained(model_name)
            model = SamModel.from_pretrained(model_name)
            model.to(device)
    return model, processor

def prepare_image(image, max_size=1024):
    if isinstance(image, np.ndarray):
        image_pil = Image.fromarray(image)
    else:
        image_pil = image
    
    if image_pil.mode != 'RGB':
        image_pil = image_pil.convert('RGB')
    
    image_np = np.array(image_pil)
    h, w = image_np.shape[:2]
    
    if max(h, w) > max_size:
        scale = max_size / max(h, w)
        new_h, new_w = int(h * scale), int(w * scale)
        image_pil = image_pil.resize((new_w, new_h), Image.Resampling.LANCZOS)
        image_np = np.array(image_pil)
    
    return image_pil, image_np

def refine_mask(mask, kernel_size=5):
    """Glättet Maskenkanten"""
    mask_uint8 = (mask > 0).astype(np.uint8) * 255
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
    mask_closed = cv2.morphologyEx(mask_uint8, cv2.MORPH_CLOSE, kernel)
    mask_refined = cv2.morphologyEx(mask_closed, cv2.MORPH_OPEN, kernel)
    return mask_refined > 0

def segment_automatic(image, quality="high", merge_parts=True):
    """
    OPTIMIERTE Automatische Segmentierung
    Schnell & präzise - kombiniert mehrere Masken
    """
    if image is None:
        return None, {"error": "Kein Bild hochgeladen"}
    
    try:
        print(f"🔄 Starting segmentation (quality: {quality}, merge: {merge_parts})...")
        model, processor = load_model()
        
        image_pil, image_np = prepare_image(image)
        h, w = image_np.shape[:2]
        
        center_x, center_y = w // 2, h // 2
        
        # Single point inference mit multimask_output
        inputs = processor(
            image_pil,
            input_points=[[[center_x, center_y]]],
            input_labels=[[1]],
            return_tensors="pt"
        ).to(device)
        
        print("🧠 Running inference...")
        with torch.no_grad():
            outputs = model(**inputs, multimask_output=True)
        
        masks = processor.image_processor.post_process_masks(
            outputs.pred_masks.cpu(),
            inputs["original_sizes"].cpu(),
            inputs["reshaped_input_sizes"].cpu()
        )[0]
        
        scores = outputs.iou_scores.cpu().numpy()
        if scores.ndim > 1:
            scores = scores.flatten()
        
        print(f"✅ Got {len(scores)} masks with scores: {scores}")
        
        # SMART MERGING: Kombiniere alle guten Masken
        if merge_parts:
            combined_mask = np.zeros((h, w), dtype=bool)
            masks_used = 0
            
            for idx, score in enumerate(scores):
                if score > 0.5:  # Nur Masken mit gutem Score
                    if masks.ndim == 4:
                        mask = masks[0, idx].numpy()
                    else:
                        mask = masks[idx].numpy()
                    
                    # OR-Kombination (super schnell!)
                    combined_mask = combined_mask | (mask > 0)
                    masks_used += 1
                    print(f"  ✅ Added mask {idx} (score: {score:.3f})")
            
            final_mask = combined_mask
            print(f"🔗 Combined {masks_used} masks into one!")
        else:
            # Nur beste Maske
            best_idx = np.argmax(scores)
            if masks.ndim == 4:
                final_mask = masks[0, best_idx].numpy() > 0
            else:
                final_mask = masks[best_idx].numpy() > 0
            masks_used = 1
            print(f"✅ Using best mask (score: {scores[best_idx]:.3f})")
        
        # Refinement für glatte Kanten
        if quality == "high":
            print("🎨 Refining mask...")
            final_mask = refine_mask(final_mask, kernel_size=7)
        
        # Overlay erstellen
        overlay = image_np.copy()
        color = np.array([255, 80, 180])  # Rosa/Pink
        
        mask_float = final_mask.astype(float)
        if quality == "high":
            mask_float = cv2.GaussianBlur(mask_float, (5, 5), 0)
        
        # Farbiges Overlay
        for c in range(3):
            overlay[:, :, c] = (
                overlay[:, :, c] * (1 - mask_float * 0.65) +
                color[c] * mask_float * 0.65
            )
        
        # Gelbe Kontur zeichnen
        contours, _ = cv2.findContours(
            final_mask.astype(np.uint8),
            cv2.RETR_EXTERNAL,
            cv2.CHAIN_APPROX_SIMPLE
        )
        cv2.drawContours(overlay, contours, -1, (255, 255, 0), 3)
        
        metadata = {
            "success": True,
            "mode": "automatic_plus" if merge_parts else "automatic",
            "quality": quality,
            "masks_combined": masks_used,
            "all_scores": scores.tolist(),
            "image_size": [w, h],
            "mask_area": int(np.sum(final_mask)),
            "mask_percentage": float(np.sum(final_mask) / (h * w) * 100),
            "num_contours": len(contours),
            "device": device
        }
        
        print("✅ Segmentation complete!")
        return Image.fromarray(overlay.astype(np.uint8)), metadata
        
    except Exception as e:
        import traceback
        print(f"❌ ERROR:\n{traceback.format_exc()}")
        return image, {"error": str(e)}

def segment_multi_dense(image, density="medium"):
    """Multi-Object Segmentierung mit Grid"""
    if image is None:
        return None, {"error": "Kein Bild"}
    
    try:
        print(f"🎯 Starting multi-region segmentation (density: {density})...")
        model, processor = load_model()
        image_pil, image_np = prepare_image(image)
        h, w = image_np.shape[:2]
        
        # Grid-Größe basierend auf Density
        if density == "high":
            grid_size = 5
        elif density == "medium":
            grid_size = 4
        else:
            grid_size = 3
        
        # Grid-Punkte generieren
        points = []
        for i in range(1, grid_size + 1):
            for j in range(1, grid_size + 1):
                x = int(w * i / (grid_size + 1))
                y = int(h * j / (grid_size + 1))
                points.append([x, y])
        
        print(f"📍 Using {len(points)} grid points ({grid_size}x{grid_size})...")
        
        all_masks = []
        all_scores = []
        
        # Segmentiere jeden Punkt
        for idx, point in enumerate(points):
            inputs = processor(
                image_pil,
                input_points=[[point]],
                input_labels=[[1]],
                return_tensors="pt"
            ).to(device)
            
            with torch.no_grad():
                outputs = model(**inputs, multimask_output=True)
            
            masks = processor.image_processor.post_process_masks(
                outputs.pred_masks.cpu(),
                inputs["original_sizes"].cpu(),
                inputs["reshaped_input_sizes"].cpu()
            )[0]
            
            scores = outputs.iou_scores.cpu().numpy().flatten()
            best_idx = np.argmax(scores)
            
            if masks.ndim == 4:
                mask = masks[0, best_idx].numpy()
            else:
                mask = masks[best_idx].numpy()
            
            # Nur Masken mit gutem Score
            if scores[best_idx] > 0.7:
                all_masks.append(refine_mask(mask))
                all_scores.append(scores[best_idx])
        
        print(f"✅ Got {len(all_masks)} quality masks")
        
        # Overlay mit verschiedenen Farben
        overlay = image_np.copy()
        
        # HSV-basierte Farbgenerierung
        colors = []
        for i in range(len(all_masks)):
            hue = int(180 * i / max(len(all_masks), 1))
            color_hsv = np.uint8([[[hue, 255, 200]]])
            color_rgb = cv2.cvtColor(color_hsv, cv2.COLOR_HSV2RGB)[0][0]
            colors.append(color_rgb)
        
        # Masken anwenden
        for mask, color, score in zip(all_masks, colors, all_scores):
            alpha = 0.4 + (score - 0.7) * 0.2  # Höherer Score = stärkere Farbe
            overlay[mask] = (
                overlay[mask] * (1 - alpha) +
                np.array(color) * alpha
            ).astype(np.uint8)
            
            # Kontur
            contours, _ = cv2.findContours(
                mask.astype(np.uint8),
                cv2.RETR_EXTERNAL,
                cv2.CHAIN_APPROX_SIMPLE
            )
            cv2.drawContours(overlay, contours, -1, color.tolist(), 2)
        
        metadata = {
            "success": True,
            "mode": "multi_object_dense",
            "density": density,
            "grid_size": f"{grid_size}x{grid_size}",
            "total_points": len(points),
            "quality_masks": len(all_masks),
            "avg_score": float(np.mean(all_scores)) if all_scores else 0,
            "scores": [float(s) for s in all_scores]
        }
        
        print("✅ Multi-region complete!")
        return Image.fromarray(overlay), metadata
        
    except Exception as e:
        import traceback
        print(f"❌ ERROR:\n{traceback.format_exc()}")
        return image, {"error": str(e)}

# Gradio Interface
demo = gr.Blocks(title="SAM2 Boostly", theme=gr.themes.Soft())

with demo:
    gr.Markdown("# 🎨 SAM2 Segmentierung - Boostly Edition")
    gr.Markdown("### ⚡ Optimierte Zero-Shot Object Segmentation")
    
    with gr.Tab("🤖 Automatisch PLUS"):
        gr.Markdown("**Smart Multi-Mask Combining** - Kombiniert automatisch alle Objektteile!")
        
        with gr.Row():
            with gr.Column():
                input_auto = gr.Image(type="pil", label="📸 Bild hochladen")
                
                quality_radio = gr.Radio(
                    choices=["high", "fast"],
                    value="high",
                    label="⚙️ Qualität",
                    info="High = präzisere Kanten, Fast = schneller"
                )
                
                merge_checkbox = gr.Checkbox(
                    value=True,
                    label="🔗 Teile zusammenfügen",
                    info="Kombiniert alle erkannten Bereiche (Fisch + Flosse = 1 Objekt)"
                )
                
                btn_auto = gr.Button("🚀 Segmentieren", variant="primary", size="lg")
                
                gr.Markdown("""
                **✨ Funktionsweise:**
                - SAM generiert 3 verschiedene Masken
                - Wenn "Teile zusammenfügen" AN: Alle kombiniert → vollständiges Objekt
                - Wenn AUS: Nur präziseste Maske
                - ⚡ Optimiert: ~10-30 Sekunden statt 25 Minuten!
                """)
            
            with gr.Column():
                output_auto = gr.Image(label="✨ Segmentiertes Bild")
                json_auto = gr.JSON(label="📊 Metadata")
        
        btn_auto.click(
            fn=segment_automatic,
            inputs=[input_auto, quality_radio, merge_checkbox],
            outputs=[output_auto, json_auto]
        )
        
        gr.Examples(
            examples=[],
            inputs=input_auto,
            label="💡 Tipp: Objekt sollte zentral im Bild sein"
        )
    
    with gr.Tab("🎯 Multi-Region"):
        gr.Markdown("**Grid-basierte Segmentierung** - Für mehrere separate Objekte")
        
        with gr.Row():
            with gr.Column():
                input_multi = gr.Image(type="pil", label="📸 Bild hochladen")
                
                density_radio = gr.Radio(
                    choices=["high", "medium", "low"],
                    value="medium",
                    label="📊 Punkt-Dichte",
                    info="Mehr Punkte = mehr Details, aber langsamer"
                )
                
                btn_multi = gr.Button("🎯 Alle Bereiche segmentieren", variant="primary", size="lg")
                
                gr.Markdown("""
                **Grid-Größen:**
                - 🔥 High: 5x5 = 25 Erkennungspunkte
                - ⚡ Medium: 4x4 = 16 Punkte (empfohlen)
                - 💨 Low: 3x3 = 9 Punkte
                
                Jedes Objekt bekommt eigene Farbe!
                """)
            
            with gr.Column():
                output_multi = gr.Image(label="✨ Segmentiertes Bild")
                json_multi = gr.JSON(label="📊 Metadata")
        
        btn_multi.click(
            fn=segment_multi_dense,
            inputs=[input_multi, density_radio],
            outputs=[output_multi, json_multi]
        )
    
    with gr.Tab("📡 API Dokumentation"):
        gr.Markdown("### 🔗 API Endpoint")
        gr.Code(
            "https://EnginDev-Boostly.hf.space/api/predict",
            label="Base URL"
        )
        
        gr.Markdown("### 📝 JavaScript Integration (für Lovable)")
        gr.Code('''
// Segmentation Service
const HUGGINGFACE_API = 'https://EnginDev-Boostly.hf.space';

async function segmentImage(imageFile, mode = 'automatic') {
  // File zu Base64 konvertieren
  const base64 = await new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result);
    reader.readAsDataURL(imageFile);
  });
  
  // API Call
  const response = await fetch(`${HUGGINGFACE_API}/api/predict`, {
    method: 'POST',
    headers: {'Content-Type': 'application/json'},
    body: JSON.stringify({
      data: [base64, "high", true],  // [image, quality, merge]
      fn_index: mode === 'automatic' ? 0 : 1
    })
  });
  
  const result = await response.json();
  
  return {
    segmentedImage: result.data[0],  // Base64 segmentiertes Bild
    metadata: result.data[1]          // JSON mit Details
  };
}

// Verwendung:
const result = await segmentImage(myImageFile, 'automatic');
console.log('Mask covers:', result.metadata.mask_percentage + '%');
        ''', language="javascript")
        
        gr.Markdown("### ⚙️ Parameter")
        gr.Markdown("""
        **fn_index:**
        - `0` = Automatisch PLUS (empfohlen für einzelne Objekte)
        - `1` = Multi-Region (für mehrere Objekte)
        
        **quality:**
        - `"high"` = Präzise Kanten, Gaussian Blur, Refinement (~20-30s)
        - `"fast"` = Schneller, weniger Nachbearbeitung (~10-15s)
        
        **merge (nur fn_index=0):**
        - `true` = Kombiniert alle Masken → vollständiges Objekt
        - `false` = Nur beste Maske → nur Hauptteil
        
        **density (nur fn_index=1):**
        - `"high"` = 5x5 Grid = 25 Punkte
        - `"medium"` = 4x4 Grid = 16 Punkte
        - `"low"` = 3x3 Grid = 9 Punkte
        """)
        
        gr.Markdown("### 📊 Response Format")
        gr.Code('''
{
  "data": [
    "...",  // Segmentiertes Bild
    {
      "success": true,
      "mode": "automatic_plus",
      "masks_combined": 3,
      "mask_percentage": 12.5,
      "num_contours": 1,
      "all_scores": [0.998, 0.583, 0.864]
    }
  ]
}
        ''', language="json")

if __name__ == "__main__":
    print("🌐 Launching Boostly SAM2 v2.1...")
    demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)