testing / app.py
Jay-Rajput's picture
Updating preds folder name
f9ea27d
import base64
import io
import json
import os
import uuid
from datetime import datetime
from pathlib import Path
import pandas as pd
import pytz
from datasets import load_dataset
import streamlit as st
from huggingface_hub import CommitScheduler, HfApi
# File paths as constants
PREDICTIONS_CSV = 'dis_predictions.csv'
USERS_JSON = 'leaders/users.json'
MATCHES_JSON = 'matches.json'
OUTCOMES_JSON = 'match_outcomes.json'
PLAYERS_JSON = 'players.json'
image_path = 'ipl_image.png'
PREDICTIONS_FOLDER = Path("predictions")
PREDICTIONS_FOLDER.mkdir(parents=True, exist_ok=True)
users_file = Path("leaders") / f"users.json"
USERS_FOLDER = users_file.parent
USERS_FOLDER.mkdir(parents=True, exist_ok=True)
# Initialize CommitScheduler
scheduler = CommitScheduler(
repo_id="DIS_IPL_Dataset",
repo_type="dataset",
folder_path=PREDICTIONS_FOLDER, # Local folder where predictions are saved temporarily
path_in_repo="predictions", # Path in dataset repo where predictions will be saved
every=10, # Push every 240 minutes (4 hours)
)
# Initialize CommitScheduler
scheduler = CommitScheduler(
repo_id="DIS_IPL_Dataset",
repo_type="dataset",
folder_path=USERS_FOLDER, # Local folder where users are saved temporarily
path_in_repo="leaders", # Path in dataset repo where predictions will be saved
every=5, # Push every 240 minutes (4 hours)
)
# Initialize CSV and JSON files if they don't exist
def initialize_files():
# Initialize predictions CSV
try:
pd.read_csv(PREDICTIONS_CSV)
except FileNotFoundError:
df = pd.DataFrame(columns=['user_name', 'match_id', 'predicted_winner', 'predicted_motm', 'bid_points'])
df.to_csv(PREDICTIONS_CSV, index=False)
def load_data(file_path):
"""
Load data from a JSON or CSV file.
Args:
file_path (str): The path to the file to load.
Returns:
pd.DataFrame or dict: The loaded data.
"""
try:
if file_path.endswith('.json'):
with open(file_path, 'r') as file:
return json.load(file)
elif file_path.endswith('.csv'):
return pd.read_csv(file_path)
except FileNotFoundError:
if file_path.endswith('.json'):
return {}
elif file_path.endswith('.csv'):
return pd.DataFrame()
def get_base64_of_image(path):
with open(path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode()
# Get today's date in IST to load today's match
def get_current_date_ist():
tz_IST = pytz.timezone('Asia/Kolkata')
datetime_ist = datetime.now(tz_IST)
return datetime_ist.strftime('%Y-%m-%d')
# Function to get matches for today
def get_today_matches():
today = get_current_date_ist()
matches = load_data(MATCHES_JSON)
today_matches = [match for match in matches if match['date'] == today]
return today_matches
# Function to check if prediction submission is allowed
def is_submission_allowed(match_id):
matches = load_data(MATCHES_JSON) # This loads matches correctly with IST times
for match in matches:
if match["match_id"] == match_id:
# Parse the match start time in IST
tz_IST = pytz.timezone('Asia/Kolkata')
match_datetime_str = f'{match["date"]} {match["time"]}'
# The match time string is like "2024-03-21 7:30 PM"
match_datetime = datetime.strptime(match_datetime_str, "%Y-%m-%d %I:%M %p")
match_datetime = tz_IST.localize(match_datetime) # Set the timezone to IST
# Get the current time in IST
current_datetime = datetime.now(tz_IST)
if current_datetime > match_datetime:
return False
else:
return True
return False # If match_id not found, default to False
def load_predictions(PREDICTIONS_CSV):
try:
return pd.read_csv(PREDICTIONS_CSV)
except FileNotFoundError:
return pd.DataFrame()
# Submit prediction function
def submit_prediction(
user_name,
match_id,
predicted_winner,
predicted_motm,
bid_points,
max_bid_points
):
# Validation for user selection
if user_name == "Select a user...":
st.warning("Please select a valid user.")
return
# Check if prediction submission is allowed for the match
if not is_submission_allowed(match_id):
st.error("Prediction submission time has passed. Predictions can't be submitted after match start.")
return
if bid_points > max_bid_points:
st.error(f"Your bid points exceed the 20% limit of your total points. Maximum allowed bid points: {max_bid_points}")
return
prediction_id = uuid.uuid4().hex
prediction_date = datetime.now().strftime('%Y-%m-%d')
prediction_data = {
'prediction_id': prediction_id,
'user_name': user_name,
'match_id': match_id,
'predicted_winner': predicted_winner,
'predicted_motm': predicted_motm,
'bid_points': bid_points,
'prediction_date': prediction_date # Include the prediction date
}
# Construct the filename to include match_id for easier retrieval
prediction_file_name = f"prediction_{match_id}_{prediction_id}.json"
prediction_file = PREDICTIONS_FOLDER / prediction_file_name
with scheduler.lock:
with prediction_file.open("a") as file:
file.write(json.dumps(prediction_data))
file.write("\n")
st.success("Prediction submitted successfully!")
def get_user_total_points(user_name):
users = load_data(USERS_JSON)
return users.get(user_name, 0)
# Define the new function
def calculate_max_bid_points(user_name):
total_points = get_user_total_points(user_name)
max_bid_points = int(total_points * 0.20) # 20% of total points
return max_bid_points
def load_users(USERS_JSON):
try:
with open(USERS_JSON, 'r') as file:
return json.load(file)
except FileNotFoundError:
return {}
def user_selection_and_prediction():
users = list(load_data(USERS_JSON))
user_name = st.selectbox("Select User", ["Select a user..."] + users)
max_bid_points = None
if user_name != "Select a user...":
max_bid_points = calculate_max_bid_points(user_name)
st.write(f"Maximum bid points you can submit: {max_bid_points}")
matches = get_today_matches()
if matches:
match_choice = st.selectbox("Select Today's Match", matches, format_func=lambda match: f"{match['teams'][0]} vs {match['teams'][1]}")
match_id = match_choice['match_id']
teams = match_choice['teams']
predicted_winner = st.selectbox("Predicted Winner", teams)
player_list = load_data(PLAYERS_JSON)
predicted_motm = ""
if predicted_winner in player_list:
players = player_list[predicted_winner]
predicted_motm = st.selectbox("Predicted Man of the Match", players)
bid_points = st.number_input("Bid Points", min_value=1, value=100, format="%d")
if st.button("Submit Prediction"):
submit_prediction(user_name, match_id, predicted_winner, predicted_motm, bid_points, max_bid_points)
else:
st.write("No matches are scheduled for today.")
def display_predictions():
if st.button("Show Predictions"):
all_predictions = []
# Check if the directory exists
if not os.path.exists(PREDICTIONS_FOLDER):
st.write("No predictions directory found.")
return
# List all JSON files in the directory
for filename in os.listdir(PREDICTIONS_FOLDER):
if filename.endswith('.json'):
file_path = os.path.join(PREDICTIONS_FOLDER, filename)
# Read each JSON file and append its contents to the list
with open(file_path, 'r') as file:
prediction = json.load(file)
all_predictions.append(prediction)
# Convert the list of dictionaries to a DataFrame
predictions_df = pd.DataFrame(all_predictions)
if not predictions_df.empty:
predictions_df['prediction_date'] = predictions_df.apply(lambda x: datetime.strptime(x['prediction_date'], '%Y-%m-%d'), axis=1)
# Filter for today's predictions
today_str = datetime.now().strftime('%Y-%m-%d')
todays_predictions = predictions_df[predictions_df['prediction_date'] == today_str]
# Remove the 'prediction_id' column if it exists
if 'prediction_id' in todays_predictions.columns:
todays_predictions = todays_predictions.drop(columns=['prediction_id', 'prediction_date'])
st.dataframe(todays_predictions, hide_index=True)
else:
st.write("No predictions for today's matches yet.")
def display_leaderboard():
if st.button("Show Leaderboard"):
try:
users = load_users(USERS_JSON)
leaderboard = sorted(users.items(), key=lambda x: x[1], reverse=True)
# Generate a list of dictionaries, each representing a row in the leaderboard
leaderboard_dicts = [{"Rank": rank+1, "User": user[0], "Points": user[1]}
for rank, user in enumerate(leaderboard)]
# Convert the list of dictionaries to a DataFrame
df_leaderboard = pd.DataFrame(leaderboard_dicts)
st.dataframe(df_leaderboard, hide_index=True)
except FileNotFoundError:
st.write("Leaderboard data not available.")
# Streamlit UI
encoded_image = get_base64_of_image(image_path)
custom_css = f"""
<style>
.header {{
font-size: 50px;
color: #FFD700; /* Gold */
text-shadow: -1px -1px 0 #000, 1px -1px 0 #000, -1px 1px 0 #000, 1px 1px 0 #000; /* Black text shadow */
text-align: center;
padding: 10px;
background-image: url('data:image/png;base64,{encoded_image}');
background-size: cover;
}}
</style>
"""
# Apply custom CSS
st.markdown(custom_css, unsafe_allow_html=True)
# Use the custom class in a div with your title
st.markdown('<div class="header">DIS IPL Match Predictions</div>', unsafe_allow_html=True)
st.write("πŸ† Predict, Compete, and Win 🏏 - Where Every Guess Counts! πŸ†")
user_guide_content = """
### πŸ“˜ User Guide
#### Submitting Predictions
- **Match Selection**: Choose the match you want to predict from today's available matches.
- **Team and Player Prediction**: Select the team you predict will win and the "Man of the Match".
- **Bid Points**: Enter the number of points you wish to bid on your prediction. Remember, the maximum you can bid is capped at 20% of your total points.
#### Scoring System
- **Winning Team Prediction**: Correct predictions earn you 1000 points, while incorrect predictions deduct 200 points.
- **Man of the Match Prediction**: Correctly predicting the "Man of the Match" awards you 200 points. No penalty for incorrect guesses.
- **Bonus Points**: An additional 200 points bonus is awarded for getting both the team and "Man of the Match" predictions right.
#### Bid Point Constraints
- You cannot bid more than 20% of your current total points.
- Bid points will be doubled if your prediction is correct, and deducted if incorrect.
#### Rules for Submission
- Predictions must be submitted before the match starts.
- Only one prediction per match is allowed.
- Review your prediction carefully before submission, as it cannot be changed once submitted.
"""
# User Guide as an expander
with st.expander("User Guide πŸ“˜"):
st.markdown(user_guide_content)
with st.expander("Submit Prediction πŸ“"):
user_selection_and_prediction()
with st.expander("Predictions πŸ”"):
display_predictions()
with st.expander("Leaderboard πŸ†"):
display_leaderboard()
############################# Admin Panel ##################################
ADMIN_PASSPHRASE = "admin123"
def fetch_latest_predictions(match_id):
dataset = load_dataset("Jay-Rajput/DIS_IPL_Dataset", config_name="predictions")
predictions = dataset['train'].filter(lambda example: example['match_id'] == match_id)
return predictions
def save_match_outcomes(outcomes):
with open(OUTCOMES_JSON, 'w') as file:
json.dump(outcomes, file, indent=4)
def update_leaderboard_and_outcomes(match_id, winning_team, man_of_the_match):
# Fetch latest predictions from the dataset repo
predictions = fetch_latest_predictions(match_id)
outcomes = load_data(OUTCOMES_JSON) # Load existing match outcomes
# Load existing match outcomes and user data from the test split
dataset = load_dataset("Jay-Rajput/DIS_IPL_Dataset", config_name="leaders")
users = {item['user_name']: item for item in dataset['train']}
# Directly update or add the match outcome
outcome_exists = False
for outcome in outcomes:
if outcome['match_id'] == match_id:
outcome.update({"winning_team": winning_team, "man_of_the_match": man_of_the_match})
outcome_exists = True
break
if not outcome_exists:
outcomes.append({"match_id": match_id, "winning_team": winning_team, "man_of_the_match": man_of_the_match})
# Update user points based on prediction accuracy
for prediction in predictions:
user_name = prediction['user_name']
# Initialize user points if not present
if user_name not in users:
users[user_name] = {'user_name': user_name, 'points': 0}
# Update points based on prediction accuracy
if prediction['predicted_winner'] == winning_team:
users[user_name] += 1000
users[user_name] += prediction['bid_points']
if prediction['predicted_motm'] == man_of_the_match:
users[user_name] += 400 # Bonus for both correct predictions
else:
users[user_name] -= 200 + prediction['bid_points'] # Penalty for wrong team prediction
save_match_outcomes(outcomes)
users.save_to_disk(USERS_JSON)
with st.sidebar:
expander = st.expander("Admin Panel", expanded=False)
admin_pass = expander.text_input("Enter admin passphrase:", type="password", key="admin_pass")
if admin_pass == ADMIN_PASSPHRASE:
expander.success("Authenticated")
all_matches = load_data(MATCHES_JSON)
match_outcomes = load_data(OUTCOMES_JSON)
submitted_match_ids = [outcome["match_id"] for outcome in match_outcomes]
# Filter matches to those that do not have outcomes submitted yet
matches_without_outcomes = [match for match in all_matches if match["match_id"] not in submitted_match_ids]
# If matches are available, let the admin select one
if matches_without_outcomes:
match_selection = expander.selectbox("Select Match", matches_without_outcomes, format_func=lambda match: f"{match['teams'][0]} vs {match['teams'][1]}", key="match_selection")
selected_match_id = match_selection['match_id']
teams = match_selection['teams']
# Let admin select the winning team
winning_team = expander.selectbox("Winning Team", teams, key="winning_team")
# Fetch and display players for the selected winning team
player_list = load_data(PLAYERS_JSON)
if winning_team in player_list:
players = player_list[winning_team]
man_of_the_match = expander.selectbox("Man of the Match", players, key="man_of_the_match")
else:
players = []
man_of_the_match = expander.text_input("Man of the Match (Type if not listed)", key="man_of_the_match_fallback")
if expander.button("Submit Match Outcome", key="submit_outcome"):
update_leaderboard_and_outcomes(selected_match_id, winning_team, man_of_the_match)
expander.success("Match outcome submitted and leaderboard updated!")
else:
expander.write("No matches are available for today.")
else:
if admin_pass: # Show error only if something was typed
expander.error("Not authenticated")