Spaces:
Sleeping
Sleeping
File size: 22,554 Bytes
80cb919 a89888b 19d62ff 80cb919 1d46eb9 80cb919 a89888b 80cb919 a89888b 80cb919 a89888b 80cb919 a89888b 80cb919 a89888b 80cb919 b7090b2 1d46eb9 80cb919 19d62ff 80cb919 19d62ff 80cb919 1d46eb9 80cb919 a89888b 80cb919 1d46eb9 4f8b3ce 1d46eb9 80cb919 a89888b 80cb919 1d46eb9 becf438 80cb919 1d46eb9 80cb919 19d62ff 80cb919 19d62ff 80cb919 1d46eb9 80cb919 1d46eb9 becf438 1d46eb9 80cb919 1d46eb9 80cb919 a89888b 80cb919 a89888b 80cb919 a89888b 80cb919 a89888b 80cb919 19d62ff 80cb919 1d46eb9 f359dc2 e138b0e 1d46eb9 e138b0e 1d46eb9 f359dc2 1d46eb9 80cb919 1d46eb9 5dcfc82 e76f718 80cb919 1d46eb9 80cb919 1d46eb9 80cb919 1d46eb9 80cb919 f359dc2 80cb919 a89888b 80cb919 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
# Root FastAPI
import os
import json
import time, logging
import threading
import datetime as dt
from typing import Optional, Dict
from fastapi import FastAPI, HTTPException, BackgroundTasks, Request
from fastapi.responses import HTMLResponse, JSONResponse
from pydantic import BaseModel
from dotenv import load_dotenv
from utils.datasets import resolve_dataset, hf_download_dataset
from utils.processor import process_file_into_sft
from utils.rag import process_file_into_rag
from utils.drive_saver import DriveSaver
from utils.cloud_llm import Paraphraser
from utils.local_llm import LocalParaphraser
from utils.schema import CentralisedWriter, RAGWriter
from utils.token import get_credentials, exchange_code, build_auth_url
from vi.translator import VietnameseTranslator
# ────────── Log ───────────
logger = logging.getLogger("app")
if not logger.handlers:
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
logger.addHandler(handler)
# ────────── Boot ──────────
load_dotenv(override=True)
# Check if running in local mode
IS_LOCAL = os.getenv("IS_LOCAL", "false").lower() == "true"
SPACE_NAME = os.getenv("SPACE_NAME", "MedAI Processor")
OUTPUT_DIR = os.path.abspath(os.getenv("OUTPUT_DIR", "cache/outputs"))
LOG_DIR = os.path.abspath(os.getenv("LOG_DIR", "logs"))
# In local mode, use data/ folder instead of cache/outputs
if IS_LOCAL:
OUTPUT_DIR = os.path.abspath("data")
logger.info(f"[MODE] Running in LOCAL mode - outputs will be saved to: {OUTPUT_DIR}")
else:
logger.info(f"[MODE] Running in CLOUD mode - outputs will be saved to: {OUTPUT_DIR}")
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(LOG_DIR, exist_ok=True)
# --- Bootstrap Google OAuth (only in cloud mode) ---
if not IS_LOCAL:
try:
creds = get_credentials()
if creds:
logger.info("✅ OAuth credentials loaded and valid")
except Exception as e:
logger.warning(f"⚠️ OAuth not initialized yet: {e}")
# --- Bootstrap Google Drive (only in cloud mode) ---
drive = DriveSaver(default_folder_id=os.getenv("GDRIVE_FOLDER_ID"))
else:
drive = None
logger.info("🚀 Local mode: Skipping Google Drive setup")
# Initialize paraphraser based on mode
if IS_LOCAL:
# Local mode: Use MedAlpaca model
logger.info("🏠 Initializing local MedAlpaca paraphraser...")
paraphraser = LocalParaphraser(
model_name="medalpaca/medalpaca-13b",
hf_token=os.getenv("HF_TOKEN")
)
else:
# Cloud mode: Use existing NVIDIA/Gemini setup
logger.info("☁️ Initializing cloud paraphraser (NVIDIA/Gemini)...")
paraphraser = Paraphraser(
nvidia_model=os.getenv("NVIDIA_MODEL", "meta/llama-3.1-8b-instruct"),
gemini_model_easy=os.getenv("GEMINI_MODEL_EASY", "gemini-2.5-flash-lite"),
gemini_model_hard=os.getenv("GEMINI_MODEL_HARD", "gemini-2.5-flash"),
)
# Vietnamese translator (currently using Helsinki-NLP/opus-mt-en-vi)
vietnamese_translator = VietnameseTranslator()
app = FastAPI(title="Medical Dataset Augmenter", version="1.1.0")
STATE_LOCK = threading.Lock()
STATE: Dict[str, object] = {
"running": False,
"dataset": None,
"started_at": None,
"progress": 0.0,
"message": "idle",
"last_result": None
}
class AugmentOptions(BaseModel):
# ratios are 0..1
paraphrase_ratio: float = 0.2
paraphrase_outputs: bool = True
backtranslate_ratio: float = 0.1
style_standardize: bool = True
deidentify: bool = True
dedupe: bool = True
max_chars: int = 5000 # cap extremely long contexts
consistency_check_ratio: float = 0.05 # small ratio e.g. 0.01
# KD / distillation (optional, keeps default off)
distill_fraction: float = 0.0 # for unlabeled only
expand: bool = True # Enable back-translation and complex augmentation
max_aug_per_sample: int = 2 # Between 1-3, number of LLM call to augment/paraphrase data
class ProcessParams(BaseModel):
augment: AugmentOptions = AugmentOptions()
sample_limit: Optional[int] = None # Set data sampling if needed
seed: int = 42
rag_processing: bool = False # Enable RAG-specific processing
vietnamese_translation: bool = False # Enable Vietnamese translation
def set_state(**kwargs):
with STATE_LOCK:
STATE.update(kwargs)
def now_iso():
return dt.datetime.utcnow().isoformat()
# Instructional UI
@app.get("/", response_class=HTMLResponse)
def root():
return f"""
<html>
<head>
<title>{SPACE_NAME} – Medical Dataset Augmenter</title>
<style>
body {{ font-family: Arial, sans-serif; max-width: 900px; margin: 2rem auto; line-height: 1.5; }}
h1, h2 {{ color: #2c3e50; }}
button {{
background: #2d89ef; color: white; border: none; padding: 8px 16px;
border-radius: 5px; cursor: pointer; margin: 5px 0;
}}
button:hover {{ background: #1b5dab; }}
.section {{ margin-bottom: 2rem; }}
#log {{ background:#f5f5f5; padding:10px; border-radius:6px; margin-top:10px; font-size:0.9rem; }}
a {{ color:#2d89ef; text-decoration:none; }}
a:hover {{ text-decoration:underline; }}
</style>
</head>
<body>
<h1>📊 {SPACE_NAME} – Medical Dataset Augmenter</h1>
<p>This Hugging Face Space processes medical datasets into a <b>centralised fine-tuning format</b>
(JSONL + CSV), with optional <i>data augmentation</i>.</p>
<div style="margin-bottom: 15px; padding: 10px; background: {'#e8f5e8' if IS_LOCAL else '#e8f0ff'}; border-radius: 5px; border-left: 4px solid {'#28a745' if IS_LOCAL else '#007bff'};">
<strong>🔧 Current Mode:</strong> {'🏠 LOCAL (MedAlpaca-13b)' if IS_LOCAL else '☁️ CLOUD (NVIDIA/Gemini APIs)'}
<br><small>Outputs will be saved to: {OUTPUT_DIR}</small>
</div>
<div class="section">
<h2>⚡ Quick Actions</h2>
<p>Click a button below to start processing a dataset with default augmentation parameters.</p>
<!-- <div style="margin-bottom: 15px; padding: 10px; background: #f8f9fa; border-radius: 5px; border-left: 4px solid #2d89ef;">
<label style="display: flex; align-items: center; cursor: pointer;">
<input type="checkbox" id="vietnameseTranslation" style="margin-right: 8px; transform: scale(1.2);">
<strong>🇻🇳 Vietnamese Translation</strong> - Translate all content to Vietnamese before processing
</label>
</div> -->
<button onclick="startJob('healthcaremagic')">▶ProcAugment HealthCareMagic (100k)</button><br>
<button onclick="startJob('icliniq')">▶ProcAugment iCliniq (10k-derived)</button><br>
<button onclick="startJob('pubmedqa_l')">▶ProcAugment PubMedQA (Labelled)</button><br>
<button onclick="startJob('pubmedqa_u')">▶ProcAugment PubMedQA (Unlabelled)</button><br>
<button onclick="startJob('pubmedqa_map')">▶ProcAugment PubMedQA (Map)</button><br><br>
<div style="border-top: 1px solid #ddd; padding-top: 10px; margin-top: 10px;">
<strong>RAG Processing:</strong> - Convert to QCA format for RAG systems<br>
<button onclick="startRagJob('healthcaremagic')" style="background: #e74c3c;">▶ RAG HealthCareMagic (100k)</button><br>
<button onclick="startRagJob('icliniq')" style="background: #e74c3c;">▶ RAG iCliniq (10k-derived)</button><br>
<button onclick="startRagJob('pubmedqa_u')" style="background: #e74c3c;">▶ RAG PubMedQA (Unlabelled)</button><br>
<button onclick="startRagJob('pubmedqa_l')" style="background: #e74c3c;">▶ RAG PubMedQA (Labelled)</button><br>
<button onclick="startRagJob('pubmedqa_map')" style="background: #e74c3c;">▶ RAG PubMedQA (Map)</button>
</div>
</div>
<div class="section">
<h2>📂 Monitoring</h2>
<ul>
<li><a href="/status" target="_blank">Check current job status</a></li>
<li><a href="/files" target="_blank">List generated artifacts</a></li>
{'<li><a href="https://medvietai-processing.hf.space/oauth2/start" target="_blank">Authorize your GCS credential</a></li>' if not IS_LOCAL else ''}
<li><a href="https://huggingface.co/spaces/BinKhoaLe1812/MedAI_Processing/blob/main/REQUEST.md" target="_blank">📑 Request Doc (all curl examples)</a></li>
</ul>
</div>
<div class="section">
<h2>📝 Log</h2>
<div id="log">Click a button above to run a job...</div>
</div>
<script>
async function startJob(dataset) {{
const log = document.getElementById("log");
const vietnameseToggle = document.getElementById("vietnameseTranslation");
const isVietnameseMode = vietnameseToggle ? vietnameseToggle.checked : false;
log.innerHTML = "⏳ Starting job for <b>" + dataset + "</b>" + (isVietnameseMode ? " with Vietnamese translation" : "") + "...";
try {{
const resp = await fetch("/process/" + dataset, {{
method: "POST",
headers: {{ "Content-Type": "application/json" }},
body: JSON.stringify({{
augment: {{
paraphrase_ratio: 0.2,
backtranslate_ratio: 0.1,
paraphrase_outputs: true,
style_standardize: true,
deidentify: true,
dedupe: true,
max_chars: 5000,
expand: true,
max_aug_per_sample: 2,
consistency_check_ratio: 0.05
}},
sample_limit: null, // Sample down (currently disabled)
seed: 42,
rag_processing: false,
vietnamese_translation: isVietnameseMode
}})
}});
const data = await resp.json();
if (resp.ok) {{
log.innerHTML = "✅ " + JSON.stringify(data);
}} else {{
log.innerHTML = "❌ Error: " + JSON.stringify(data);
}}
}} catch (err) {{
log.innerHTML = "❌ JS Error: " + err;
}}
}}
async function startRagJob(dataset) {{
const log = document.getElementById("log");
const vietnameseToggle = document.getElementById("vietnameseTranslation");
const isVietnameseMode = vietnameseToggle ? vietnameseToggle.checked : false;
log.innerHTML = "⏳ Starting RAG processing for <b>" + dataset + "</b>" + (isVietnameseMode ? " with Vietnamese translation" : "") + "...";
try {{
const resp = await fetch("/rag/" + dataset, {{
method: "POST",
headers: {{ "Content-Type": "application/json" }},
body: JSON.stringify({{
sample_limit: null,
seed: 42,
vietnamese_translation: isVietnameseMode
}})
}});
const data = await resp.json();
if (resp.ok) {{
log.innerHTML = "✅ RAG Processing Started: " + JSON.stringify(data);
}} else {{
log.innerHTML = "❌ Error: " + JSON.stringify(data);
}}
}} catch (err) {{
log.innerHTML = "❌ JS Error: " + err;
}}
}}
</script>
</body>
</html>
"""
@app.get("/status")
def status():
with STATE_LOCK:
return JSONResponse(STATE)
# ──────── GCS token (only in cloud mode) ────────
@app.get("/oauth2/start")
def oauth2_start(request: Request):
if IS_LOCAL:
raise HTTPException(400, "OAuth is not available in local mode. Google Drive integration is disabled.")
# Compute redirect URI dynamically from the actual host the Space is using
host = request.headers.get("x-forwarded-host") or request.headers.get("host")
scheme = "https" # Spaces are HTTPS at the edge
redirect_uri = f"{scheme}://{host}/oauth2/callback"
try:
url = build_auth_url(redirect_uri)
return JSONResponse({"authorize_url": url})
except Exception as e:
raise HTTPException(500, f"OAuth init failed: {e}")
# Display your token (only in cloud mode)
@app.get("/oauth2/callback")
def oauth2_callback(request: Request, code: str = "", state: str = ""):
if IS_LOCAL:
raise HTTPException(400, "OAuth is not available in local mode. Google Drive integration is disabled.")
if not code:
raise HTTPException(400, "Missing 'code'")
# Send req
host = request.headers.get("x-forwarded-host") or request.headers.get("host")
scheme = "https"
redirect_uri = f"{scheme}://{host}/oauth2/callback"
# Parse and show token code
try:
creds = exchange_code(code, redirect_uri)
refresh = creds.refresh_token or os.getenv("GDRIVE_REFRESH_TOKEN", "")
# UI
html = f"""
<html>
<head>
<style>
body {{ font-family: sans-serif; margin: 2em; }}
.token-box {{
padding: 1em; border: 1px solid #ccc; border-radius: 6px;
background: #f9f9f9; font-family: monospace;
word-break: break-all; white-space: pre-wrap;
}}
.note {{ margin-top: 1em; color: #555; }}
</style>
</head>
<body>
<h2>✅ Google Drive Authorized</h2>
<p>Your refresh token is:</p>
<div class="token-box">{refresh}</div>
<p class="note">
👉 Copy this token and save it into your Hugging Face Space Secrets
as <code>GDRIVE_REFRESH_TOKEN</code>.
This ensures persistence across rebuilds.
</p>
</body>
</html>
"""
return HTMLResponse(html)
except Exception as e:
raise HTTPException(500, f"OAuth exchange failed: {e}")
@app.get("/files")
def files():
out = []
for root, _, fns in os.walk(OUTPUT_DIR):
for fn in fns:
out.append(os.path.relpath(os.path.join(root, fn), OUTPUT_DIR))
return {"output_dir": OUTPUT_DIR, "files": sorted(out)}
@app.post("/process/{dataset_key}")
def process_dataset(dataset_key: str, params: ProcessParams, background: BackgroundTasks):
with STATE_LOCK:
if STATE["running"]:
logger.warning(
f"[JOB] Rejecting new job dataset={dataset_key} "
f"current={STATE['dataset']} started_at={STATE['started_at']}"
)
raise HTTPException(409, detail="Another job is running.")
STATE["running"] = True
STATE["dataset"] = dataset_key
STATE["started_at"] = now_iso()
STATE["progress"] = 0.0
STATE["message"] = "starting"
STATE["last_result"] = None
logger.info(
f"[JOB] Queued dataset={dataset_key} "
f"params={{'sample_limit': {params.sample_limit}, 'seed': {params.seed}, "
f"'rag_processing': {params.rag_processing}, 'augment': {params.augment.dict()} }}"
)
# Start job to background runner thread
logger.info(f"[JOB] Started dataset={dataset_key}")
background.add_task(_run_job, dataset_key, params)
return {"ok": True, "message": f"Job for '{dataset_key}' started."}
@app.post("/rag/{dataset_key}")
def process_rag_dataset(dataset_key: str, params: ProcessParams, background: BackgroundTasks):
"""Dedicated RAG processing endpoint"""
# Force RAG processing mode
params.rag_processing = True
with STATE_LOCK:
if STATE["running"]:
logger.warning(
f"[RAG] Rejecting new RAG job dataset={dataset_key} "
f"current={STATE['dataset']} started_at={STATE['started_at']}"
)
raise HTTPException(409, detail="Another job is running.")
STATE["running"] = True
STATE["dataset"] = dataset_key
STATE["started_at"] = now_iso()
STATE["progress"] = 0.0
STATE["message"] = "starting RAG processing"
STATE["last_result"] = None
logger.info(
f"[RAG] Queued RAG dataset={dataset_key} "
f"params={{'sample_limit': {params.sample_limit}, 'seed': {params.seed} }}"
)
# Start job to background runner thread
logger.info(f"[RAG] Started RAG dataset={dataset_key}")
background.add_task(_run_job, dataset_key, params)
return {"ok": True, "message": f"RAG processing job for '{dataset_key}' started."}
def _run_job(dataset_key: str, params: ProcessParams):
t0 = time.time()
try:
ds = resolve_dataset(dataset_key)
if not ds:
set_state(running=False, message="unknown dataset")
return
# Download HF Dataset and start processing units
set_state(message="downloading")
local_path = hf_download_dataset(ds["repo_id"], ds["filename"], ds["repo_type"])
logger.info(f"[JOB] Downloaded {ds['repo_id']}/{ds['filename']} → {local_path}")
# Prepare timestamp for fire writing
ts = dt.datetime.utcnow().strftime("%Y%m%d-%H%M%S")
mode_suffix = "rag" if params.rag_processing else "sft"
stem = f"{dataset_key}-{mode_suffix}-{ts}"
jsonl_path = os.path.join(OUTPUT_DIR, f"{stem}.jsonl")
csv_path = os.path.join(OUTPUT_DIR, f"{stem}.csv")
# Change state
set_state(message="processing", progress=0.05)
# Writer
writer = RAGWriter(jsonl_path=jsonl_path, csv_path=csv_path) if params.rag_processing else CentralisedWriter(jsonl_path=jsonl_path, csv_path=csv_path)
# Load translator if Vietnamese translation is requested
translator = None
if params.vietnamese_translation:
set_state(message="Loading Vietnamese translator", progress=0.05)
try:
# Ensure cache directories are set up properly
cache_dir = os.path.abspath("cache/huggingface")
os.makedirs(cache_dir, exist_ok=True)
os.environ["HF_HOME"] = cache_dir
# Pass paraphraser to translator for LLM-based translation
vietnamese_translator.paraphraser = paraphraser
vietnamese_translator.load_model()
translator = vietnamese_translator
logger.info("✅ Vietnamese translator loaded successfully with LLM models")
except Exception as e:
logger.error(f"❌ Failed to load Vietnamese translator: {e}")
logger.warning("Continuing without Vietnamese translation...")
set_state(message=f"Warning: Vietnamese translation disabled - {e}", progress=0.1)
# Don't fail the entire job, just disable translation
translator = None
if params.rag_processing:
# RAG processing mode
set_state(message="RAG processing", progress=0.1)
count, stats = process_file_into_rag(
dataset_key=dataset_key,
input_path=local_path,
writer=writer,
nvidia_model=os.getenv("NVIDIA_MODEL", "meta/llama-3.1-8b-instruct"),
sample_limit=params.sample_limit,
seed=params.seed,
progress_cb=lambda p, msg=None: set_state(progress=p, message=msg or STATE["message"]),
translator=translator,
paraphraser=paraphraser,
is_local=IS_LOCAL,
hf_token=os.getenv("HF_TOKEN")
)
else:
# Standard SFT processing mode
set_state(message="SFT processing", progress=0.1)
# Add Vietnamese translation flag to augment options
augment_opts = params.augment.dict()
augment_opts["vietnamese_translation"] = params.vietnamese_translation
count, stats = process_file_into_sft(
dataset_key=dataset_key,
input_path=local_path,
writer=writer,
paraphraser=paraphraser,
augment_opts=augment_opts,
sample_limit=params.sample_limit,
seed=params.seed,
progress_cb=lambda p, msg=None: set_state(progress=p, message=msg or STATE["message"]),
translator=translator
)
# Log translation statistics if translator was used
if translator and hasattr(translator, 'get_stats'):
translation_stats = translator.get_stats()
logger.info(f"[JOB] Translation stats: {translation_stats}")
stats["translation_stats"] = translation_stats
logger.info(f"[JOB] Processed dataset={dataset_key} rows={count} stats={stats}")
writer.close()
# Upload to GDrive (only in cloud mode) or save locally
if IS_LOCAL:
set_state(message="saving files locally", progress=0.95)
logger.info(f"[JOB] Files saved locally: jsonl={jsonl_path} csv={csv_path}")
up1 = up2 = True # Local mode always "succeeds"
else:
set_state(message="uploading to Google Drive", progress=0.95)
up1 = drive.upload_file_to_drive(jsonl_path, mimetype="application/json")
up2 = drive.upload_file_to_drive(csv_path, mimetype="text/csv")
logger.info(
f"[JOB] Uploads complete uploaded={bool(up1 and up2)} "
f"jsonl={jsonl_path} csv={csv_path}"
)
# Finalize a task
result = {
"dataset": dataset_key,
"processing_mode": "RAG" if params.rag_processing else "SFT",
"processed_rows": count,
"stats": stats,
"artifacts": {"jsonl": jsonl_path, "csv": csv_path},
"uploaded": bool(up1 and up2),
"duration_sec": round(time.time() - t0, 2)
}
set_state(message="done", progress=1.0, last_result=result, running=False)
logger.info(
f"[JOB] Finished dataset={dataset_key} "
f"duration_sec={round(time.time()-t0, 2)}"
)
except Exception as e:
logger.exception(f"[JOB] Error for dataset={dataset_key}: {e}")
set_state(message=f"error: {e}", running=False)
|