File size: 22,554 Bytes
80cb919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a89888b
 
19d62ff
80cb919
1d46eb9
80cb919
 
 
 
 
 
 
 
 
 
 
a89888b
 
 
80cb919
 
 
a89888b
 
 
 
 
 
 
 
80cb919
 
 
a89888b
 
 
 
 
 
 
 
80cb919
a89888b
 
 
 
 
80cb919
a89888b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80cb919
b7090b2
1d46eb9
 
80cb919
 
 
 
 
 
 
 
 
 
 
 
 
 
19d62ff
 
 
80cb919
 
 
 
19d62ff
80cb919
 
 
 
 
 
 
 
 
 
1d46eb9
80cb919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a89888b
 
 
 
 
80cb919
 
 
 
1d46eb9
4f8b3ce
 
 
 
 
 
1d46eb9
80cb919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a89888b
80cb919
 
 
 
 
 
 
 
 
 
 
 
1d46eb9
becf438
80cb919
1d46eb9
80cb919
 
 
 
 
 
19d62ff
 
 
80cb919
 
 
 
 
19d62ff
 
80cb919
 
 
1d46eb9
 
80cb919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d46eb9
becf438
1d46eb9
 
80cb919
 
 
 
 
 
1d46eb9
 
80cb919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a89888b
80cb919
 
a89888b
 
 
80cb919
 
 
 
 
 
 
 
 
 
 
a89888b
80cb919
 
a89888b
 
 
80cb919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d62ff
80cb919
1d46eb9
 
 
 
 
f359dc2
 
 
 
e138b0e
 
 
1d46eb9
 
e138b0e
1d46eb9
 
f359dc2
 
 
 
1d46eb9
80cb919
 
 
 
 
 
 
 
 
 
1d46eb9
5dcfc82
e76f718
 
 
80cb919
 
 
 
1d46eb9
 
 
 
80cb919
 
 
 
 
1d46eb9
80cb919
 
1d46eb9
 
80cb919
f359dc2
 
 
 
 
 
80cb919
 
 
a89888b
 
 
 
 
 
 
 
 
 
 
 
 
80cb919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# Root FastAPI
import os
import json
import time, logging
import threading
import datetime as dt
from typing import Optional, Dict

from fastapi import FastAPI, HTTPException, BackgroundTasks, Request 
from fastapi.responses import HTMLResponse, JSONResponse
from pydantic import BaseModel
from dotenv import load_dotenv

from utils.datasets import resolve_dataset, hf_download_dataset
from utils.processor import process_file_into_sft
from utils.rag import process_file_into_rag
from utils.drive_saver import DriveSaver
from utils.cloud_llm import Paraphraser
from utils.local_llm import LocalParaphraser
from utils.schema import CentralisedWriter, RAGWriter
from utils.token import get_credentials, exchange_code, build_auth_url
from vi.translator import VietnameseTranslator

# ────────── Log ───────────
logger = logging.getLogger("app")
if not logger.handlers:
    logger.setLevel(logging.INFO)
    handler = logging.StreamHandler()
    logger.addHandler(handler)

# ────────── Boot ──────────
load_dotenv(override=True)

# Check if running in local mode
IS_LOCAL = os.getenv("IS_LOCAL", "false").lower() == "true"

SPACE_NAME = os.getenv("SPACE_NAME", "MedAI Processor")
OUTPUT_DIR = os.path.abspath(os.getenv("OUTPUT_DIR", "cache/outputs"))
LOG_DIR = os.path.abspath(os.getenv("LOG_DIR", "logs"))

# In local mode, use data/ folder instead of cache/outputs
if IS_LOCAL:
    OUTPUT_DIR = os.path.abspath("data")
    logger.info(f"[MODE] Running in LOCAL mode - outputs will be saved to: {OUTPUT_DIR}")
else:
    logger.info(f"[MODE] Running in CLOUD mode - outputs will be saved to: {OUTPUT_DIR}")

os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(LOG_DIR, exist_ok=True)

# --- Bootstrap Google OAuth (only in cloud mode) ---
if not IS_LOCAL:
    try:
        creds = get_credentials()
        if creds:
            logger.info("✅ OAuth credentials loaded and valid")
    except Exception as e:
        logger.warning(f"⚠️ OAuth not initialized yet: {e}")

    # --- Bootstrap Google Drive (only in cloud mode) ---
    drive = DriveSaver(default_folder_id=os.getenv("GDRIVE_FOLDER_ID"))
else:
    drive = None
    logger.info("🚀 Local mode: Skipping Google Drive setup")

# Initialize paraphraser based on mode
if IS_LOCAL:
    # Local mode: Use MedAlpaca model
    logger.info("🏠 Initializing local MedAlpaca paraphraser...")
    paraphraser = LocalParaphraser(
        model_name="medalpaca/medalpaca-13b",
        hf_token=os.getenv("HF_TOKEN")
    )
else:
    # Cloud mode: Use existing NVIDIA/Gemini setup
    logger.info("☁️ Initializing cloud paraphraser (NVIDIA/Gemini)...")
    paraphraser = Paraphraser(
        nvidia_model=os.getenv("NVIDIA_MODEL", "meta/llama-3.1-8b-instruct"),
        gemini_model_easy=os.getenv("GEMINI_MODEL_EASY", "gemini-2.5-flash-lite"),
        gemini_model_hard=os.getenv("GEMINI_MODEL_HARD", "gemini-2.5-flash"),
    )

# Vietnamese translator (currently using Helsinki-NLP/opus-mt-en-vi)
vietnamese_translator = VietnameseTranslator()

app = FastAPI(title="Medical Dataset Augmenter", version="1.1.0")

STATE_LOCK = threading.Lock()
STATE: Dict[str, object] = {
    "running": False,
    "dataset": None,
    "started_at": None,
    "progress": 0.0,
    "message": "idle",
    "last_result": None
}

class AugmentOptions(BaseModel):
    # ratios are 0..1
    paraphrase_ratio: float = 0.2
    paraphrase_outputs: bool = True
    backtranslate_ratio: float = 0.1
    style_standardize: bool = True
    deidentify: bool = True
    dedupe: bool = True
    max_chars: int = 5000                 # cap extremely long contexts
    consistency_check_ratio: float = 0.05  # small ratio e.g. 0.01
    # KD / distillation (optional, keeps default off)
    distill_fraction: float = 0.0         # for unlabeled only
    expand: bool = True                   # Enable back-translation and complex augmentation
    max_aug_per_sample: int = 2           # Between 1-3, number of LLM call to augment/paraphrase data

class ProcessParams(BaseModel):
    augment: AugmentOptions = AugmentOptions()
    sample_limit: Optional[int] = None    # Set data sampling if needed 
    seed: int = 42
    rag_processing: bool = False          # Enable RAG-specific processing
    vietnamese_translation: bool = False  # Enable Vietnamese translation

def set_state(**kwargs):
    with STATE_LOCK:
        STATE.update(kwargs)

def now_iso():
    return dt.datetime.utcnow().isoformat()

# Instructional UI
@app.get("/", response_class=HTMLResponse)
def root():
    return f"""
    <html>
    <head>
      <title>{SPACE_NAME} – Medical Dataset Augmenter</title>
      <style>
        body {{ font-family: Arial, sans-serif; max-width: 900px; margin: 2rem auto; line-height: 1.5; }}
        h1, h2 {{ color: #2c3e50; }}
        button {{
          background: #2d89ef; color: white; border: none; padding: 8px 16px;
          border-radius: 5px; cursor: pointer; margin: 5px 0;
        }}
        button:hover {{ background: #1b5dab; }}
        .section {{ margin-bottom: 2rem; }}
        #log {{ background:#f5f5f5; padding:10px; border-radius:6px; margin-top:10px; font-size:0.9rem; }}
        a {{ color:#2d89ef; text-decoration:none; }}
        a:hover {{ text-decoration:underline; }}
      </style>
    </head>
    <body>
      <h1>📊 {SPACE_NAME} – Medical Dataset Augmenter</h1>
      <p>This Hugging Face Space processes medical datasets into a <b>centralised fine-tuning format</b>
         (JSONL + CSV), with optional <i>data augmentation</i>.</p>
      
      <div style="margin-bottom: 15px; padding: 10px; background: {'#e8f5e8' if IS_LOCAL else '#e8f0ff'}; border-radius: 5px; border-left: 4px solid {'#28a745' if IS_LOCAL else '#007bff'};">
        <strong>🔧 Current Mode:</strong> {'🏠 LOCAL (MedAlpaca-13b)' if IS_LOCAL else '☁️ CLOUD (NVIDIA/Gemini APIs)'}
        <br><small>Outputs will be saved to: {OUTPUT_DIR}</small>
      </div>

      <div class="section">
        <h2>⚡ Quick Actions</h2>
        <p>Click a button below to start processing a dataset with default augmentation parameters.</p>
        
        <!-- <div style="margin-bottom: 15px; padding: 10px; background: #f8f9fa; border-radius: 5px; border-left: 4px solid #2d89ef;">
           <label style="display: flex; align-items: center; cursor: pointer;">
             <input type="checkbox" id="vietnameseTranslation" style="margin-right: 8px; transform: scale(1.2);">
             <strong>🇻🇳 Vietnamese Translation</strong> - Translate all content to Vietnamese before processing
           </label>
        </div> -->
        
        <button onclick="startJob('healthcaremagic')">▶ProcAugment HealthCareMagic (100k)</button><br>
        <button onclick="startJob('icliniq')">▶ProcAugment iCliniq (10k-derived)</button><br>
        <button onclick="startJob('pubmedqa_l')">▶ProcAugment PubMedQA (Labelled)</button><br>
        <button onclick="startJob('pubmedqa_u')">▶ProcAugment PubMedQA (Unlabelled)</button><br>
        <button onclick="startJob('pubmedqa_map')">▶ProcAugment PubMedQA (Map)</button><br><br>
        <div style="border-top: 1px solid #ddd; padding-top: 10px; margin-top: 10px;">
          <strong>RAG Processing:</strong> - Convert to QCA format for RAG systems<br>
          <button onclick="startRagJob('healthcaremagic')" style="background: #e74c3c;">▶ RAG HealthCareMagic (100k)</button><br>
          <button onclick="startRagJob('icliniq')" style="background: #e74c3c;">▶ RAG iCliniq (10k-derived)</button><br>
          <button onclick="startRagJob('pubmedqa_u')" style="background: #e74c3c;">▶ RAG PubMedQA (Unlabelled)</button><br>
          <button onclick="startRagJob('pubmedqa_l')" style="background: #e74c3c;">▶ RAG PubMedQA (Labelled)</button><br>
          <button onclick="startRagJob('pubmedqa_map')" style="background: #e74c3c;">▶ RAG PubMedQA (Map)</button>
        </div>
      </div>

      <div class="section">
        <h2>📂 Monitoring</h2>
        <ul>
          <li><a href="/status" target="_blank">Check current job status</a></li>
          <li><a href="/files" target="_blank">List generated artifacts</a></li>
          {'<li><a href="https://medvietai-processing.hf.space/oauth2/start" target="_blank">Authorize your GCS credential</a></li>' if not IS_LOCAL else ''}
          <li><a href="https://huggingface.co/spaces/BinKhoaLe1812/MedAI_Processing/blob/main/REQUEST.md" target="_blank">📑 Request Doc (all curl examples)</a></li>
        </ul>
      </div>

      <div class="section">
        <h2>📝 Log</h2>
        <div id="log">Click a button above to run a job...</div>
      </div>

      <script>
        async function startJob(dataset) {{
          const log = document.getElementById("log");
          const vietnameseToggle = document.getElementById("vietnameseTranslation");
          const isVietnameseMode = vietnameseToggle ? vietnameseToggle.checked : false;
          
          log.innerHTML = "⏳ Starting job for <b>" + dataset + "</b>" + (isVietnameseMode ? " with Vietnamese translation" : "") + "...";
          try {{
            const resp = await fetch("/process/" + dataset, {{
              method: "POST",
              headers: {{ "Content-Type": "application/json" }},
              body: JSON.stringify({{
                augment: {{
                  paraphrase_ratio: 0.2,
                  backtranslate_ratio: 0.1,
                  paraphrase_outputs: true,
                  style_standardize: true,
                  deidentify: true,
                  dedupe: true,
                  max_chars: 5000,
                  expand: true,
                  max_aug_per_sample: 2,
                  consistency_check_ratio: 0.05
                }},
                sample_limit: null,          // Sample down (currently disabled)
                seed: 42,
                rag_processing: false,
                vietnamese_translation: isVietnameseMode
              }})
            }});
            const data = await resp.json();
            if (resp.ok) {{
              log.innerHTML = "✅ " + JSON.stringify(data);
            }} else {{
              log.innerHTML = "❌ Error: " + JSON.stringify(data);
            }}
          }} catch (err) {{
            log.innerHTML = "❌ JS Error: " + err;
          }}
        }}
        
        async function startRagJob(dataset) {{
          const log = document.getElementById("log");
          const vietnameseToggle = document.getElementById("vietnameseTranslation");
          const isVietnameseMode = vietnameseToggle ? vietnameseToggle.checked : false;
          
          log.innerHTML = "⏳ Starting RAG processing for <b>" + dataset + "</b>" + (isVietnameseMode ? " with Vietnamese translation" : "") + "...";
          try {{
            const resp = await fetch("/rag/" + dataset, {{
              method: "POST",
              headers: {{ "Content-Type": "application/json" }},
              body: JSON.stringify({{
                sample_limit: null,
                seed: 42,
                vietnamese_translation: isVietnameseMode
              }})
            }});
            const data = await resp.json();
            if (resp.ok) {{
              log.innerHTML = "✅ RAG Processing Started: " + JSON.stringify(data);
            }} else {{
              log.innerHTML = "❌ Error: " + JSON.stringify(data);
            }}
          }} catch (err) {{
            log.innerHTML = "❌ JS Error: " + err;
          }}
        }}
      </script>
    </body>
    </html>
    """

@app.get("/status")
def status():
    with STATE_LOCK:
        return JSONResponse(STATE)
    
# ──────── GCS token (only in cloud mode) ────────
@app.get("/oauth2/start")
def oauth2_start(request: Request):
    if IS_LOCAL:
        raise HTTPException(400, "OAuth is not available in local mode. Google Drive integration is disabled.")
    
    # Compute redirect URI dynamically from the actual host the Space is using
    host = request.headers.get("x-forwarded-host") or request.headers.get("host")
    scheme = "https"  # Spaces are HTTPS at the edge
    redirect_uri = f"{scheme}://{host}/oauth2/callback"

    try:
        url = build_auth_url(redirect_uri)
        return JSONResponse({"authorize_url": url})
    except Exception as e:
        raise HTTPException(500, f"OAuth init failed: {e}")

# Display your token (only in cloud mode)
@app.get("/oauth2/callback")
def oauth2_callback(request: Request, code: str = "", state: str = ""):
    if IS_LOCAL:
        raise HTTPException(400, "OAuth is not available in local mode. Google Drive integration is disabled.")
    
    if not code:
        raise HTTPException(400, "Missing 'code'")
    # Send req
    host = request.headers.get("x-forwarded-host") or request.headers.get("host")
    scheme = "https"
    redirect_uri = f"{scheme}://{host}/oauth2/callback"
    # Parse and show token code
    try:
        creds = exchange_code(code, redirect_uri)
        refresh = creds.refresh_token or os.getenv("GDRIVE_REFRESH_TOKEN", "")
        # UI
        html = f"""
        <html>
        <head>
          <style>
            body {{ font-family: sans-serif; margin: 2em; }}
            .token-box {{
              padding: 1em; border: 1px solid #ccc; border-radius: 6px;
              background: #f9f9f9; font-family: monospace;
              word-break: break-all; white-space: pre-wrap;
            }}
            .note {{ margin-top: 1em; color: #555; }}
          </style>
        </head>
        <body>
          <h2>✅ Google Drive Authorized</h2>
          <p>Your refresh token is:</p>
          <div class="token-box">{refresh}</div>
          <p class="note">
            👉 Copy this token and save it into your Hugging Face Space Secrets
            as <code>GDRIVE_REFRESH_TOKEN</code>.  
            This ensures persistence across rebuilds.
          </p>
        </body>
        </html>
        """
        return HTMLResponse(html)
    except Exception as e:
        raise HTTPException(500, f"OAuth exchange failed: {e}")

@app.get("/files")
def files():
    out = []
    for root, _, fns in os.walk(OUTPUT_DIR):
        for fn in fns:
            out.append(os.path.relpath(os.path.join(root, fn), OUTPUT_DIR))
    return {"output_dir": OUTPUT_DIR, "files": sorted(out)}

@app.post("/process/{dataset_key}")
def process_dataset(dataset_key: str, params: ProcessParams, background: BackgroundTasks):
    with STATE_LOCK:
        if STATE["running"]:
            logger.warning(
                f"[JOB] Rejecting new job dataset={dataset_key} "
                f"current={STATE['dataset']} started_at={STATE['started_at']}"
            )
            raise HTTPException(409, detail="Another job is running.")
        STATE["running"] = True
        STATE["dataset"] = dataset_key
        STATE["started_at"] = now_iso()
        STATE["progress"] = 0.0
        STATE["message"] = "starting"
        STATE["last_result"] = None
        logger.info(
            f"[JOB] Queued dataset={dataset_key} "
            f"params={{'sample_limit': {params.sample_limit}, 'seed': {params.seed}, "
            f"'rag_processing': {params.rag_processing}, 'augment': {params.augment.dict()} }}"
        )
    # Start job to background runner thread
    logger.info(f"[JOB] Started dataset={dataset_key}")
    background.add_task(_run_job, dataset_key, params)
    return {"ok": True, "message": f"Job for '{dataset_key}' started."}

@app.post("/rag/{dataset_key}")
def process_rag_dataset(dataset_key: str, params: ProcessParams, background: BackgroundTasks):
    """Dedicated RAG processing endpoint"""
    # Force RAG processing mode
    params.rag_processing = True
    
    with STATE_LOCK:
        if STATE["running"]:
            logger.warning(
                f"[RAG] Rejecting new RAG job dataset={dataset_key} "
                f"current={STATE['dataset']} started_at={STATE['started_at']}"
            )
            raise HTTPException(409, detail="Another job is running.")
        STATE["running"] = True
        STATE["dataset"] = dataset_key
        STATE["started_at"] = now_iso()
        STATE["progress"] = 0.0
        STATE["message"] = "starting RAG processing"
        STATE["last_result"] = None
        logger.info(
            f"[RAG] Queued RAG dataset={dataset_key} "
            f"params={{'sample_limit': {params.sample_limit}, 'seed': {params.seed} }}"
        )
    # Start job to background runner thread
    logger.info(f"[RAG] Started RAG dataset={dataset_key}")
    background.add_task(_run_job, dataset_key, params)
    return {"ok": True, "message": f"RAG processing job for '{dataset_key}' started."}

def _run_job(dataset_key: str, params: ProcessParams):
    t0 = time.time()
    try:
        ds = resolve_dataset(dataset_key)
        if not ds:
            set_state(running=False, message="unknown dataset")
            return
        
        # Download HF Dataset and start processing units
        set_state(message="downloading")
        local_path = hf_download_dataset(ds["repo_id"], ds["filename"], ds["repo_type"])
        logger.info(f"[JOB] Downloaded {ds['repo_id']}/{ds['filename']}{local_path}")

        # Prepare timestamp for fire writing
        ts = dt.datetime.utcnow().strftime("%Y%m%d-%H%M%S")
        mode_suffix = "rag" if params.rag_processing else "sft"
        stem = f"{dataset_key}-{mode_suffix}-{ts}"
        jsonl_path = os.path.join(OUTPUT_DIR, f"{stem}.jsonl")
        csv_path   = os.path.join(OUTPUT_DIR, f"{stem}.csv")
        # Change state
        set_state(message="processing", progress=0.05)

        # Writer
        writer = RAGWriter(jsonl_path=jsonl_path, csv_path=csv_path) if params.rag_processing else CentralisedWriter(jsonl_path=jsonl_path, csv_path=csv_path)
        
        # Load translator if Vietnamese translation is requested
        translator = None
        if params.vietnamese_translation:
            set_state(message="Loading Vietnamese translator", progress=0.05)
            try:
                # Ensure cache directories are set up properly
                cache_dir = os.path.abspath("cache/huggingface")
                os.makedirs(cache_dir, exist_ok=True)
                os.environ["HF_HOME"] = cache_dir

                # Pass paraphraser to translator for LLM-based translation
                vietnamese_translator.paraphraser = paraphraser
                vietnamese_translator.load_model()
                translator = vietnamese_translator
                logger.info("✅ Vietnamese translator loaded successfully with LLM models")
            except Exception as e:
                logger.error(f"❌ Failed to load Vietnamese translator: {e}")
                logger.warning("Continuing without Vietnamese translation...")
                set_state(message=f"Warning: Vietnamese translation disabled - {e}", progress=0.1)
                # Don't fail the entire job, just disable translation
                translator = None
        
        if params.rag_processing:
            # RAG processing mode
            set_state(message="RAG processing", progress=0.1)
            count, stats = process_file_into_rag(
                dataset_key=dataset_key,
                input_path=local_path,
                writer=writer,
                nvidia_model=os.getenv("NVIDIA_MODEL", "meta/llama-3.1-8b-instruct"),
                sample_limit=params.sample_limit,
                seed=params.seed,
                progress_cb=lambda p, msg=None: set_state(progress=p, message=msg or STATE["message"]),
                translator=translator,
                paraphraser=paraphraser,
                is_local=IS_LOCAL,
                hf_token=os.getenv("HF_TOKEN")
            )
        else:
            # Standard SFT processing mode
            set_state(message="SFT processing", progress=0.1)
            # Add Vietnamese translation flag to augment options
            augment_opts = params.augment.dict()
            augment_opts["vietnamese_translation"] = params.vietnamese_translation
            
            count, stats = process_file_into_sft(
                dataset_key=dataset_key,
                input_path=local_path,
                writer=writer,
                paraphraser=paraphraser,
                augment_opts=augment_opts,
                sample_limit=params.sample_limit,
                seed=params.seed,
                progress_cb=lambda p, msg=None: set_state(progress=p, message=msg or STATE["message"]),
                translator=translator
            )
        # Log translation statistics if translator was used
        if translator and hasattr(translator, 'get_stats'):
            translation_stats = translator.get_stats()
            logger.info(f"[JOB] Translation stats: {translation_stats}")
            stats["translation_stats"] = translation_stats
        
        logger.info(f"[JOB] Processed dataset={dataset_key} rows={count} stats={stats}")
        writer.close()

        # Upload to GDrive (only in cloud mode) or save locally
        if IS_LOCAL:
            set_state(message="saving files locally", progress=0.95)
            logger.info(f"[JOB] Files saved locally: jsonl={jsonl_path} csv={csv_path}")
            up1 = up2 = True  # Local mode always "succeeds"
        else:
            set_state(message="uploading to Google Drive", progress=0.95)
            up1 = drive.upload_file_to_drive(jsonl_path, mimetype="application/json")
            up2 = drive.upload_file_to_drive(csv_path,   mimetype="text/csv")
            logger.info(
                f"[JOB] Uploads complete uploaded={bool(up1 and up2)} "
                f"jsonl={jsonl_path} csv={csv_path}"
            )
        
        # Finalize a task
        result = {
            "dataset": dataset_key,
            "processing_mode": "RAG" if params.rag_processing else "SFT",
            "processed_rows": count,
            "stats": stats,
            "artifacts": {"jsonl": jsonl_path, "csv": csv_path},
            "uploaded": bool(up1 and up2),
            "duration_sec": round(time.time() - t0, 2)
        }
        set_state(message="done", progress=1.0, last_result=result, running=False)
        logger.info(
            f"[JOB] Finished dataset={dataset_key} "
            f"duration_sec={round(time.time()-t0, 2)}"
        )
    except Exception as e:
        logger.exception(f"[JOB] Error for dataset={dataset_key}: {e}")
        set_state(message=f"error: {e}", running=False)