Spaces:
Sleeping
Sleeping
File size: 30,663 Bytes
80cb919 1d46eb9 80cb919 1d46eb9 80cb919 b0a3faf 80cb919 1d46eb9 80cb919 1d46eb9 80cb919 1d46eb9 80cb919 1d46eb9 80cb919 5dcfc82 b0a3faf 5dcfc82 b0a3faf 5dcfc82 b0a3faf 5dcfc82 b0a3faf 915cc29 5dcfc82 b0a3faf 5dcfc82 b0a3faf 5dcfc82 b0a3faf 5dcfc82 b0a3faf 5dcfc82 b0a3faf 915cc29 b0a3faf 5dcfc82 b0a3faf 5dcfc82 b0a3faf 5dcfc82 b0a3faf d668aec b0a3faf d668aec 88e7ced d668aec 88e7ced d668aec 88e7ced d668aec 88e7ced d668aec b0a3faf d668aec b0a3faf d668aec 88e7ced d668aec 88e7ced d668aec 88e7ced d668aec 88e7ced d668aec b0a3faf 80cb919 915cc29 5dcfc82 80cb919 1d46eb9 80cb919 1d46eb9 80cb919 1d46eb9 80cb919 915cc29 5dcfc82 915cc29 5dcfc82 80cb919 d668aec b0a3faf 80cb919 5dcfc82 1d46eb9 5dcfc82 80cb919 5dcfc82 1d46eb9 b0a3faf d668aec b0a3faf 80cb919 1d46eb9 80cb919 5dcfc82 80cb919 1d46eb9 80cb919 5dcfc82 80cb919 1d46eb9 80cb919 1d46eb9 80cb919 5dcfc82 1d46eb9 80cb919 5dcfc82 80cb919 1d46eb9 80cb919 1d46eb9 80cb919 5dcfc82 1d46eb9 80cb919 5dcfc82 80cb919 1d46eb9 80cb919 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
# Dataset-specific parsers + paraphrasing flow
import json
import random
import hashlib
import logging
from typing import Callable, Optional, Dict, Tuple
from utils.schema import sft_row
from utils import augment as A
from vi.processing import translate_sft_row, should_translate, log_translation_stats
# Logger
logger = logging.getLogger("processor")
if not logger.handlers:
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler())
def _hash_id(*parts) -> str:
h = hashlib.sha256()
for p in parts:
h.update(str(p).encode("utf-8"))
return h.hexdigest()[:16]
def _iter_json_or_jsonl(path: str):
with open(path, "r", encoding="utf-8") as f:
first = f.read(1); f.seek(0)
if first == "[":
data = json.load(f)
for obj in data: yield obj
else:
for line in f:
line = line.strip()
if line: yield json.loads(line)
def process_file_into_sft(
dataset_key: str,
input_path: str,
writer,
paraphraser,
augment_opts: Dict,
sample_limit: Optional[int],
seed: int,
progress_cb: Optional[Callable[[float, str], None]],
translator=None
) -> Tuple[int, Dict]:
random.seed(seed)
stats = {
"written": 0,
"paraphrased_input": 0,
"paraphrased_output": 0,
"backtranslated_input": 0,
"backtranslated_output": 0,
"dedup_skipped": 0,
"consistency_failed": 0,
"medical_accuracy_failed": 0,
"clinical_scenarios_created": 0,
"enhanced_terminology": 0,
"vietnamese_variants": 0
}
# Start processing SFT
key_summary = {k: augment_opts.get(k) for k in (
"paraphrase_ratio","backtranslate_ratio","paraphrase_outputs",
"style_standardize","deidentify","dedupe",
"consistency_check_ratio","distill_fraction"
)}
logger.info(
f"[PROC] Begin dataset={dataset_key} sample_limit={sample_limit} opts={key_summary}"
)
# If deduplicating enabled
dedupe_seen = set() if augment_opts.get("dedupe", True) else None
key = dataset_key.lower()
if key in ("healthcaremagic", "icliniq"):
count = _proc_med_dialog(source=key, path=input_path, writer=writer,
paraphraser=paraphraser, opts=augment_opts,
sample_limit=sample_limit, stats=stats, cb=progress_cb, dedupe_seen=dedupe_seen, translator=translator)
elif key == "pubmedqa_l":
count = _proc_pubmedqa_l(input_path, writer, paraphraser, augment_opts, sample_limit, stats, progress_cb, dedupe_seen=dedupe_seen, translator=translator)
elif key == "pubmedqa_u":
count = _proc_pubmedqa_u(input_path, writer, paraphraser, augment_opts, sample_limit, stats, progress_cb, dedupe_seen=dedupe_seen, translator=translator)
elif key == "pubmedqa_map":
count = _proc_pubmedqa_map(input_path, writer, paraphraser, augment_opts, sample_limit, stats, progress_cb, dedupe_seen=dedupe_seen, translator=translator)
else:
raise ValueError(f"Unknown dataset: {dataset_key}")
logger.info(f"[PROC] End dataset={dataset_key} stats={stats}")
return count, stats
# ——————————— helpers ———————————
def _build_variants(user: str, out: str, paraphraser, opts: Dict, stats: Dict):
"""Return a list of (user_variant, out_variant, applied_tags) not including the original."""
variants = []
max_k = max(0, int(opts.get("max_aug_per_sample", 1)))
for _ in range(max_k):
applied = []
u2, did_p = A.maybe_paraphrase(user, opts.get("paraphrase_ratio", 0.0), paraphraser, "easy")
if did_p: applied.append("paraphrase_input"); stats["paraphrased_input"] += 1
u3, did_bt = A.maybe_backtranslate(u2, opts.get("backtranslate_ratio", 0.0), paraphraser)
if did_bt: applied.append("backtranslate_input"); stats["backtranslated_input"] += 1
o3 = out
if opts.get("paraphrase_outputs", False):
o2, did_p2 = A.maybe_paraphrase(out, opts.get("paraphrase_ratio", 0.0), paraphraser, "hard")
if did_p2: applied.append("paraphrase_output"); stats["paraphrased_output"] += 1
o3b, did_bt2 = A.maybe_backtranslate(o2, opts.get("backtranslate_ratio", 0.0), paraphraser)
if did_bt2: applied.append("backtranslate_output"); stats["backtranslated_output"] += 1
o3 = o3b
# If nothing applied, skip this variant
if not applied:
continue
# Style standardize and punctuation for the variant too
if opts.get("style_standardize", True):
o3 = A.style_standardize_answer(o3)
u3 = A.ensure_terminal_punct(u3) if u3 else u3
o3 = A.ensure_terminal_punct(o3) if o3 else o3
variants.append((u3, o3, applied))
return variants
def _build_enriched_variants(user: str, out: str, paraphraser, opts: Dict, stats: Dict, translator=None):
"""Build multiple paraphrased variants for SFT enrichment with enhanced diversity strategies"""
variants = []
# Enhanced answer generation with different perspectives
answer_variants = []
answer_strategies = [
("original", out, ["original_answer"]),
("concise", None, ["concise_answer"]),
("detailed", None, ["detailed_answer"]),
("clinical", None, ["clinical_answer"]),
("patient_friendly", None, ["patient_friendly_answer"])
]
for strategy, original_text, tags in answer_strategies:
if strategy == "original":
answer_variants.append((original_text, tags))
else:
try:
# Generate different answer styles
style_prompt = _get_answer_style_prompt(strategy, user, out)
enhanced_out = paraphraser.paraphrase(out, difficulty="hard", custom_prompt=style_prompt)
if enhanced_out and not A.is_invalid_response(enhanced_out):
# Clean conversational elements
enhanced_out = A.clean_conversational_elements(enhanced_out)
if opts.get("style_standardize", True):
enhanced_out = A.style_standardize_answer(enhanced_out)
enhanced_out = A.ensure_terminal_punct(enhanced_out)
answer_variants.append((enhanced_out, tags))
stats["paraphrased_output"] += 1
except Exception as e:
logger.warning(f"Failed to generate {strategy} answer variant: {e}")
continue
# Enhanced question generation with different question types
question_variants = []
question_strategies = [
("original", user, ["original_question"]),
("clarifying", None, ["clarifying_question"]),
("follow_up", None, ["follow_up_question"]),
("symptom_focused", None, ["symptom_focused_question"]),
("treatment_focused", None, ["treatment_focused_question"])
]
for strategy, original_text, tags in question_strategies:
if strategy == "original":
question_variants.append((original_text, tags))
else:
try:
# Generate different question styles
style_prompt = _get_question_style_prompt(strategy, user, out)
enhanced_user = paraphraser.paraphrase(user, difficulty="hard", custom_prompt=style_prompt)
if enhanced_user and not A.is_invalid_response(enhanced_user):
# Clean conversational elements
enhanced_user = A.clean_conversational_elements(enhanced_user)
enhanced_user = A.ensure_terminal_punct(enhanced_user)
question_variants.append((enhanced_user, tags))
stats["paraphrased_input"] += 1
except Exception as e:
logger.warning(f"Failed to generate {strategy} question variant: {e}")
continue
# Create combinations: each question variant with each answer variant
for q_user, q_tags in question_variants:
for a_out, a_tags in answer_variants:
combined_tags = q_tags + a_tags
variants.append((q_user, a_out, combined_tags))
# Add Vietnamese variants if translator is available
if translator and translator.is_loaded():
vi_variants = []
for q_user, a_out, tags in variants[:5]: # Limit to first 5 to avoid too many variants
try:
# Translate question and answer
vi_q = translator.translate_text(q_user)
vi_a = translator.translate_text(a_out)
if vi_q and vi_a and not A.is_invalid_response(vi_q) and not A.is_invalid_response(vi_a):
vi_tags = tags + ["vietnamese_translated"]
vi_variants.append((vi_q, vi_a, vi_tags))
stats["vietnamese_variants"] = stats.get("vietnamese_variants", 0) + 1
except Exception as e:
logger.warning(f"Failed to create Vietnamese variant: {e}")
continue
variants.extend(vi_variants)
return variants
def _get_answer_style_prompt(strategy: str, question: str, original_answer: str) -> str:
"""Generate style-specific prompts for answer enhancement with medical focus"""
prompts = {
"concise": (
"Rewrite this medical answer to be more concise while preserving all key medical information, clinical facts, and diagnostic details. Return only the rewritten answer without any introduction or commentary:\n\n"
f"{original_answer}"
),
"detailed": (
"Expand this medical answer with more detailed explanations, clinical context, and additional medical information while maintaining accuracy. Return only the expanded answer without any introduction or commentary:\n\n"
f"{original_answer}"
),
"clinical": (
"Rewrite this answer using more formal clinical language, precise medical terminology, and professional medical communication style. Return only the rewritten answer without any introduction or commentary:\n\n"
f"{original_answer}"
),
"patient_friendly": (
"Rewrite this medical answer in simpler, more patient-friendly language while keeping it medically accurate and informative. Return only the rewritten answer without any introduction or commentary:\n\n"
f"{original_answer}"
)
}
return prompts.get(strategy, f"Paraphrase this medical answer: {original_answer}")
def _get_question_style_prompt(strategy: str, original_question: str, answer: str) -> str:
"""Generate style-specific prompts for question enhancement with medical focus"""
prompts = {
"clarifying": (
"Rewrite this medical question to ask for clarification or more specific medical information. Return only the rewritten question without any introduction or commentary:\n\n"
f"{original_question}"
),
"follow_up": (
"Create a follow-up question that a patient might ask after this medical question, focusing on related medical concerns. Return only the follow-up question without any introduction or commentary:\n\n"
f"{original_question}"
),
"symptom_focused": (
"Rewrite this question to focus more on symptoms, their characteristics, and clinical presentation. Return only the rewritten question without any introduction or commentary:\n\n"
f"{original_question}"
),
"treatment_focused": (
"Rewrite this question to focus more on treatment options, management strategies, and therapeutic approaches. Return only the rewritten question without any introduction or commentary:\n\n"
f"{original_question}"
)
}
return prompts.get(strategy, f"Paraphrase this medical question: {original_question}")
def _apply_aug(instr: str, user: str, out: str, source: str, opts: Dict, paraphraser, stats: Dict):
# Base cleanup & caps (returns cleaned strings)
user = A.base_cleanup(user, opts.get("max_chars", 5000), opts.get("deidentify", True))
out = A.base_cleanup(out, opts.get("max_chars", 5000), opts.get("deidentify", True))
instr = A.base_cleanup(instr, opts.get("max_chars", 5000), False)
# Language sanity (mostly English—skip aggressive transforms if not)
if not A.lang_is_english(user): # very rare
return instr, user, out, []
# Stack list of entries that has been applied augmentation and stylings
applied = []
# Clean conversational elements first
out = A.clean_conversational_elements(out)
user = A.clean_conversational_elements(user)
# Clean invalid responses with retry logic
if A.is_invalid_response(out):
out = A.retry_invalid_response(out, paraphraser, max_retries=3)
if not out: # If retry failed, return empty to indicate drop
return instr, user, "", applied
applied.append("invalid_response_retried")
# Style standardizing the answer
if opts.get("style_standardize", True):
out = A.style_standardize_answer(out)
applied.append("style_standardize")
# Ensure punctuation/whitespace
user = A.ensure_terminal_punct(user) if user else user
out = A.ensure_terminal_punct(out) if out else out
return instr, user, out, applied
def _commit_row(writer, source, rid, task, instr, user, out, opts, stats, aug_applied, extra_meta=None, dedupe_seen=None, translator=None):
# Dedup entry
if dedupe_seen is not None:
fp = A.fingerprint(instr, user, out)
if fp in dedupe_seen:
stats["dedup_skipped"] += 1
return False
dedupe_seen.add(fp)
meta = {"augmentations": aug_applied}
if extra_meta:
meta.update(extra_meta)
row = sft_row(instr, user, out, source=source, rid=rid, task=task, meta=meta)
# Apply Vietnamese translation if requested
if should_translate(opts.get("vietnamese_translation", False), translator):
try:
row = translate_sft_row(row, translator)
meta["vietnamese_translated"] = True
row["meta"] = meta
except Exception as e:
logger.error(f"Failed to translate SFT row: {e}")
writer.write(row)
stats["written"] += 1
return True
# ——————————— dataset processors ———————————
def _proc_med_dialog(source, path, writer, paraphraser, opts, sample_limit, stats, cb, dedupe_seen=None, translator=None):
count = 0
written = 0
for i, obj in enumerate(_iter_json_or_jsonl(path), start=1):
try:
instr_raw = obj.get("instruction") or "Answer the patient's question like a clinician. Be concise and safe."
user_raw = obj.get("input") or ""
out_raw = obj.get("output") or ""
# Ensure we have string values
instr = str(instr_raw).strip()
user = str(user_raw).strip()
out = str(out_raw).strip()
rid = _hash_id(source, i, len(user), len(out))
except Exception as e:
logger.warning(f"[PROC] {source} error processing item {i}: {e}, item: {obj}")
continue
try:
instr, user, out, applied = _apply_aug(instr, user, out, source, opts, paraphraser, stats)
# Skip if retry failed (empty output) - DO NOT RECORD FAILED RESPONSES
if not out:
stats["dropped_invalid"] = stats.get("dropped_invalid", 0) + 1
logger.warning(f"[PROC] {source} dropped invalid response for item {i} - will retry in next batch")
continue
# 1) ALWAYS write the original (cleaned/style-standardised only)
# Enhanced medical accuracy validation (optimized for both cloud and local modes)
if not A.validate_medical_accuracy(user, out, paraphraser):
stats["medical_accuracy_failed"] = stats.get("medical_accuracy_failed", 0) + 1
applied.append("medical_accuracy_flag")
# Optional consistency spot-check (cheap)
if not A.consistency_ok(user, out, opts.get("consistency_check_ratio", 0.0), paraphraser):
stats["consistency_failed"] += 1
# keep the sample but tag it
applied.append("consistency_flag")
# 2) If expansion is enabled, add enriched variants for SFT
_commit_row(writer, source, rid, "medical_dialogue", instr, user, out, opts, stats, ["base"] + applied, dedupe_seen=dedupe_seen, translator=translator)
# Add enriched variants if expand is enabled
if opts.get("expand", True):
# Use enriched variants for SFT (multiple Q&A combinations)
enriched_variants = _build_enriched_variants(user, out, paraphraser, opts, stats, translator)
for (u_aug, o_aug, aug_tags) in enriched_variants:
rid_aug = f"{rid}-enriched{random.randint(1000,9999)}"
_commit_row(writer, source, rid_aug, "medical_dialogue", instr, u_aug, o_aug, opts, stats, aug_tags, dedupe_seen=dedupe_seen, translator=translator)
# Add clinical scenarios for enhanced diversity
if opts.get("clinical_scenarios", True):
# Use dedicated method if available (both cloud and local modes now support this)
if hasattr(paraphraser, 'create_clinical_scenarios'):
clinical_scenarios = paraphraser.create_clinical_scenarios(user, out)
else:
clinical_scenarios = A.create_clinical_scenarios(user, out, paraphraser)
for (scenario_q, scenario_a, scenario_tag) in clinical_scenarios:
rid_scenario = f"{rid}-scenario{random.randint(1000,9999)}"
_commit_row(writer, source, rid_scenario, "medical_dialogue", instr, scenario_q, scenario_a, opts, stats, [scenario_tag], dedupe_seen=dedupe_seen, translator=translator)
stats["clinical_scenarios_created"] += 1
# Increment count only on success
count += 1
except Exception as e:
logger.warning(f"[PROC] {source} error in processing/augmentation for item {i}: {e}")
continue
if sample_limit and count >= sample_limit:
break
if cb and i % 1000 == 0:
cb(min(0.9, 0.05 + i/200000), f"{source}: processed {i} rows")
if cb:
cb(0.92, f"{source} done ({count})")
logger.info(f"[PROC] {source} done count={count} written={stats['written']} dedup_skipped={stats['dedup_skipped']}")
return count
def _proc_pubmedqa_l(path, writer, paraphraser, opts, sample_limit, stats, cb, dedupe_seen=None, translator=None):
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
count = 0
for k, v in data.items():
try:
q_raw = v.get("QUESTION") or ""
ctx_list = v.get("CONTEXTS") or []
long_ans_raw = v.get("LONG_ANSWER") or ""
final_raw = v.get("final_decision") or ""
# Ensure we have string values
q = str(q_raw).strip() if q_raw else ""
if isinstance(ctx_list, list):
context = "\n".join(str(ctx) for ctx in ctx_list).strip()
else:
context = str(ctx_list).strip()
long_ans = str(long_ans_raw).strip() if long_ans_raw else ""
final = str(final_raw).strip() if final_raw else ""
except Exception as e:
logger.warning(f"[PROC] pubmedqa_l error processing item {k}: {e}, item: {v}")
continue
try:
instr = "Answer the biomedical question using the provided context. Include a concise rationale if possible."
user = f"Question: {q}\n\nContext:\n{context}" if context else f"Question: {q}"
out = long_ans if long_ans else final
rid = str(k)
instr, user, out, applied = _apply_aug(instr, user, out, "pubmedqa_l", opts, paraphraser, stats)
# Skip if retry failed (empty output)
if not out:
stats["dropped_invalid"] = stats.get("dropped_invalid", 0) + 1
continue
_commit_row(writer, "pubmedqa_l", rid, "biomedical_qa", instr, user, out, opts, stats, applied,
extra_meta={"year": v.get("YEAR"), "meshes": v.get("MESHES"), "labels": v.get("LABELS")}, dedupe_seen=dedupe_seen, translator=translator)
if opts.get("expand", True):
# Use enriched variants for SFT (multiple Q&A combinations)
enriched_variants = _build_enriched_variants(user, out, paraphraser, opts, stats, translator)
for (u_aug, o_aug, aug_tags) in enriched_variants:
rid_aug = f"{rid}-enriched{random.randint(1000,9999)}"
_commit_row(writer, "pubmedqa_l", rid_aug, "biomedical_qa",
instr, u_aug, o_aug, opts, stats, aug_tags, dedupe_seen=dedupe_seen, translator=translator)
# Increment count only on success
count += 1
except Exception as e:
logger.warning(f"[PROC] pubmedqa_l error in processing/augmentation for item {k}: {e}")
continue
if sample_limit and count >= sample_limit:
break
if cb and count % 1000 == 0:
cb(min(0.9, 0.05 + count/60000), f"pubmedqa_l processed {count}")
if cb:
cb(0.93, f"pubmedqa_l done ({count})")
logger.info(f"[PROC] pubmedqa_l done count={count} written={stats['written']} dedup_skipped={stats['dedup_skipped']}")
return count
def _proc_pubmedqa_u(path, writer, paraphraser, opts, sample_limit, stats, cb, dedupe_seen=None, translator=None):
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
count = 0
for k, v in data.items():
try:
q_raw = v.get("QUESTION") or ""
ctx_list = v.get("CONTEXTS") or []
# Ensure we have string values
q = str(q_raw).strip() if q_raw else ""
if isinstance(ctx_list, list):
context = "\n".join(str(ctx) for ctx in ctx_list).strip()
else:
context = str(ctx_list).strip()
except Exception as e:
logger.warning(f"[PROC] pubmedqa_u error processing item {k}: {e}, item: {v}")
continue
try:
instr = "Rewrite the context into a succinct note, then answer the question. If unknown, say 'insufficient evidence'."
user = f"Question: {q}\n\nContext:\n{context}" if context else f"Question: {q}"
out = "" # unlabeled
rid = str(k)
# Optional KD/distillation for a small fraction
if opts.get("distill_fraction", 0.0) > 0.0 and random.random() < float(opts["distill_fraction"]):
prompt = f"{instr}\n\n{user}\n\nAnswer briefly and safely."
guess = paraphraser.paraphrase(prompt, difficulty="hard") # cheap single call
if guess and len(guess) < 2000:
out = guess.strip()
instr, user, out, applied = _apply_aug(instr, user, out, "pubmedqa_u", opts, paraphraser, stats)
# Skip if retry failed (empty output)
if not out:
stats["dropped_invalid"] = stats.get("dropped_invalid", 0) + 1
continue
_commit_row(writer, "pubmedqa_u", str(k), "biomedical_qa_unlabeled", instr, user, out, opts, stats, applied, dedupe_seen=dedupe_seen, translator=translator)
if opts.get("expand", True):
# Use enriched variants for SFT (multiple Q&A combinations)
enriched_variants = _build_enriched_variants(user, out, paraphraser, opts, stats, translator)
for (u_aug, o_aug, aug_tags) in enriched_variants:
rid_aug = f"{rid}-enriched{random.randint(1000,9999)}"
_commit_row(writer, "pubmedqa_u", rid_aug, "biomedical_qa",
instr, u_aug, o_aug, opts, stats, aug_tags, dedupe_seen=dedupe_seen, translator=translator)
# Increment count only on success
count += 1
except Exception as e:
logger.warning(f"[PROC] pubmedqa_u error in processing/augmentation for item {k}: {e}")
continue
if sample_limit and count >= sample_limit:
break
if cb and count % 2000 == 0:
cb(min(0.9, 0.05 + count/80000), f"pubmedqa_u processed {count}")
if cb:
cb(0.94, f"pubmedqa_u done ({count})")
logger.info(f"[PROC] pubmedqa_u done count={count} written={stats['written']} dedup_skipped={stats['dedup_skipped']}")
return count
def _proc_pubmedqa_map(path, writer, paraphraser, opts, sample_limit, stats, cb, dedupe_seen=None, translator=None):
with open(path, "r", encoding="utf-8") as f:
obj = json.load(f)
# Log the structure for debugging
logger.info(f"[PROC] pubmedqa_map data type: {type(obj)}")
if isinstance(obj, dict):
logger.info(f"[PROC] pubmedqa_map dict keys: {list(obj.keys())}")
if len(obj) > 0:
sample_key = next(iter(obj.keys()))
sample_value = obj[sample_key]
logger.info(f"[PROC] pubmedqa_map sample value type: {type(sample_value)}")
if isinstance(sample_value, dict):
logger.info(f"[PROC] pubmedqa_map sample value keys: {list(sample_value.keys())}")
# Iteration of items
def iter_items():
try:
if isinstance(obj, list):
for it in obj:
if isinstance(it, dict):
yield it
else:
logger.warning(f"[PROC] pubmedqa_map skipping non-dict list item: {type(it)}")
elif isinstance(obj, dict):
qs, cs, ans = obj.get("question"), obj.get("context"), obj.get("answer")
if isinstance(qs, list) and isinstance(cs, list) and isinstance(ans, list):
for i in range(min(len(qs), len(cs), len(ans))):
yield {"question": qs[i], "context": cs[i], "answer": ans[i]}
else:
# Handle case where values might be dictionaries or other objects
for k, v in obj.items():
if isinstance(v, dict):
# If v is a dict, ensure it has the expected structure
if "question" in v and "context" in v and "answer" in v:
yield v
else:
# Try to map the keys to expected structure
yield {
"question": v.get("question") or v.get("QUESTION") or str(k),
"context": v.get("context") or v.get("CONTEXT") or "",
"answer": v.get("answer") or v.get("ANSWER") or ""
}
else:
# If v is not a dict, create a simple structure
yield {"question": str(k), "context": str(v) if v else "", "answer": ""}
else:
logger.warning(f"[PROC] pubmedqa_map unexpected data type: {type(obj)}")
except Exception as e:
logger.error(f"[PROC] pubmedqa_map error in iter_items: {e}")
return
count = 0
for i, v in enumerate(iter_items(), start=1):
try:
# Ensure we have string values, convert if necessary
q_raw = v.get("question") or ""
c_raw = v.get("context") or ""
a_raw = v.get("answer") or ""
# Convert to string if not already
q = str(q_raw).strip() if q_raw else ""
c = str(c_raw).strip() if c_raw else ""
a = str(a_raw).strip() if a_raw else ""
instr = "Answer the biomedical question based on the context. Justify briefly."
user = f"Question: {q}\n\nContext:\n{c}" if c else f"Question: {q}"
out = a
rid = _hash_id("pubmedqa_map", i, len(q))
# Process the item
instr, user, out, applied = _apply_aug(instr, user, out, "pubmedqa_map", opts, paraphraser, stats)
# Skip if retry failed (empty output)
if not out:
stats["dropped_invalid"] = stats.get("dropped_invalid", 0) + 1
continue
_commit_row(writer, "pubmedqa_map", rid, "biomedical_qa", instr, user, out, opts, stats, applied, dedupe_seen=dedupe_seen, translator=translator)
# Handle expansion if enabled
if opts.get("expand", True):
# Use enriched variants for SFT (multiple Q&A combinations)
enriched_variants = _build_enriched_variants(user, out, paraphraser, opts, stats, translator)
for (u_aug, o_aug, aug_tags) in enriched_variants:
rid_aug = f"{rid}-enriched{random.randint(1000,9999)}"
_commit_row(writer, "pubmedqa_map", rid_aug, "biomedical_qa",
instr, u_aug, o_aug, opts, stats, aug_tags, dedupe_seen=dedupe_seen, translator=translator)
# Increment count only on success
count += 1
except Exception as e:
logger.warning(f"[PROC] pubmedqa_map error processing item {i}: {e}, item: {v}")
continue
# Check sample limit
if sample_limit and count >= sample_limit:
break
if cb and i % 2000 == 0:
cb(min(0.9, 0.05 + i/120000), f"pubmedqa_map processed {i}")
if cb:
cb(0.95, f"pubmedqa_map done ({count})")
logger.info(f"[PROC] pubmedqa_map done count={count} written={stats['written']} dedup_skipped={stats['dedup_skipped']}")
return count
|