test_pyan / app.py
ricklon's picture
Update app.py
ddf32d4 verified
import streamlit as st
import torch
import torchaudio
from pyannote.audio import Pipeline
from pyannote.audio.pipelines.utils.hook import ProgressHook
import tempfile
import os
import matplotlib.pyplot as plt
from pyannote.core import notebook
from huggingface_hub import HfApi, snapshot_download, hf_hub_download
from huggingface_hub.errors import LocalEntryNotFoundError, HfHubHTTPError
import requests
import pyannote.audio
import sys
import traceback
from speechbrain.pretrained import EncoderClassifier
from pydub import AudioSegment
import numpy as np
# Set page configuration
st.set_page_config(page_title="Optimized Speaker Diarization App", layout="wide")
st.title("Optimized Speaker Diarization App")
# Fetch HF_TOKEN from environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
st.error("HF_TOKEN not found in environment variables. Please set it in your Hugging Face Space secrets.")
st.stop()
class ProgressHook:
def __init__(self, status, progress_bar):
self.status = status
self.progress_bar = progress_bar
self.total = 0
self.completed = 0
self.current_stage = ""
def __call__(self, *args, **kwargs):
if len(args) == 2 and isinstance(args[0], str):
# Handle the case where it's called with (stage, data)
self.current_stage = args[0]
self.status.update(label=f"Processing: {self.current_stage}", state="running")
elif 'completed' in kwargs and 'total' in kwargs:
self.completed = kwargs['completed']
self.total = kwargs['total']
self._update_progress()
elif len(args) == 2 and all(isinstance(arg, (int, float)) for arg in args):
self.completed, self.total = args
self._update_progress()
def _update_progress(self):
if self.total > 0:
progress_percentage = min(self.completed / self.total, 1.0)
self.status.update(label=f"Processing: {self.current_stage} - {progress_percentage:.1%} complete", state="running")
self.progress_bar.progress(progress_percentage)
def preprocess_audio(tmp_path):
# Load the audio file using pydub
audio = AudioSegment.from_file(tmp_path)
# Convert to mono if stereo
if audio.channels == 2:
audio = audio.set_channels(1)
# Resample to 16kHz if necessary
if audio.frame_rate != 16000:
audio = audio.set_frame_rate(16000)
st.info("Resampled audio to 16 kHz")
# Convert to numpy array
samples = np.array(audio.get_array_of_samples())
# Convert to torch tensor
waveform = torch.FloatTensor(samples).unsqueeze(0) / 32768.0 # Normalize to [-1, 1]
# Determine the segment size (10 seconds at 16 kHz)
segment_size = 160000
# Calculate the number of segments
num_segments = (waveform.shape[1] + segment_size - 1) // segment_size
# Calculate the expected total length
expected_length = num_segments * segment_size
# Calculate the padding length
padding_length = expected_length - waveform.shape[1]
if padding_length > 0:
# Pad the waveform with zeros
pad = torch.zeros((waveform.shape[0], padding_length))
waveform = torch.cat((waveform, pad), dim=1)
st.info(f"Padded waveform with {padding_length} zeros")
else:
st.info("No padding needed")
# Save the processed waveform to a temporary WAV file
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as processed_file:
processed_path = processed_file.name
torchaudio.save(processed_path, waveform, 16000)
st.info("Saved processed waveform to temporary WAV file")
return waveform, 16000, processed_path
def check_versions():
st.info("Checking package versions...")
pyannote_version = pyannote.audio.__version__
torch_version = torch.__version__
st.write(f"Pyannote Audio version: {pyannote_version}")
st.write(f"PyTorch version: {torch_version}")
if pyannote_version < "3.1.0":
st.warning("Your pyannote.audio version might be outdated. Consider upgrading to 3.1.0 or later.")
if torch_version < "2.0.0":
st.warning("Your PyTorch version might be outdated. Consider upgrading to 2.0.0 or later.")
check_versions()
def verify_token(token):
api = HfApi()
try:
user_info = api.whoami(token=token)
st.success(f"Token verified. Logged in as: {user_info['name']}")
return True
except Exception as e:
st.error(f"Token verification failed: {str(e)}")
return False
def check_hf_api():
st.info("Checking Hugging Face API...")
api_url = "https://huggingface.co/api/models/pyannote/speaker-diarization-3.1"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
try:
response = requests.get(api_url, headers=headers)
response.raise_for_status()
st.success("Successfully connected to Hugging Face API")
with st.expander("API Response"):
st.json(response.json())
except requests.exceptions.RequestException as e:
st.error(f"Error connecting to Hugging Face API: {str(e)}")
if response.status_code == 403:
st.error("Access denied. Please check your token permissions.")
st.info("Ensure your token has permission to access gated repositories.")
st.code(response.text)
def verify_model_files():
st.info("Verifying model files...")
required_files = [
"config.yaml",
"pytorch_model.bin",
"pyannote_serialized_object.bin"
]
for file in required_files:
try:
path = hf_hub_download("pyannote/speaker-diarization-3.1", filename=file, use_auth_token=HF_TOKEN)
if os.path.exists(path):
st.success(f"File {file} found at {path}")
else:
st.error(f"File {file} not found")
except Exception as e:
st.error(f"Error downloading {file}: {str(e)}")
@st.cache_resource
def load_pipeline():
try:
st.info("Attempting to load the pipeline...")
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=HF_TOKEN
)
st.success("Pipeline created successfully")
if torch.cuda.is_available():
st.info("Moving pipeline to GPU...")
pipeline.to(torch.device("cuda"))
st.success("Pipeline moved to GPU")
return pipeline
except Exception as e:
st.error(f"Error loading pipeline: {str(e)}")
st.error("Error details:")
st.code(traceback.format_exc())
raise e
@st.cache_resource
def load_speechbrain_model():
st.info("Loading SpeechBrain model...")
classifier = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb")
st.success("SpeechBrain model loaded successfully")
return classifier
# Sidebar
with st.sidebar:
st.header("Settings")
show_advanced = st.toggle("Show Advanced Options")
if show_advanced:
num_speakers = st.number_input("Number of speakers (0 for auto)", min_value=0, value=0)
min_speakers = st.number_input("Minimum number of speakers", min_value=1, value=1)
max_speakers = st.number_input("Maximum number of speakers", min_value=1, value=5)
# Main content
tab1, tab2, tab3 = st.tabs(["Upload & Process", "Results", "Visualization"])
with tab1:
uploaded_file = st.file_uploader("Choose an audio file", type=['wav', 'mp3', 'flac'])
if uploaded_file is not None:
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
tmp_file.write(uploaded_file.getvalue())
tmp_path = tmp_file.name
try:
if verify_token(HF_TOKEN):
check_hf_api()
verify_model_files()
pipeline = load_pipeline()
speechbrain_model = load_speechbrain_model()
else:
st.stop()
# Preprocess the audio file
waveform, sample_rate, processed_path = preprocess_audio(tmp_path)
with st.status("Processing audio...", expanded=True) as status:
progress_bar = st.progress(0)
progress_hook = ProgressHook(status, progress_bar)
# Run the pipeline on the processed audio file
diarization_args = {
"file": processed_path,
"hook": progress_hook
}
if show_advanced:
if num_speakers > 0:
diarization_args["num_speakers"] = num_speakers
else:
diarization_args["min_speakers"] = min_speakers
diarization_args["max_speakers"] = max_speakers
diarization = pipeline(**diarization_args)
status.update(label="Diarization complete!", state="complete")
# Generate RTTM content
rttm_content = ""
for turn, _, speaker in diarization.itertracks(yield_label=True):
rttm_line = f"SPEAKER {os.path.basename(tmp_path)} 1 {turn.start:.3f} {turn.duration:.3f} <NA> <NA> {speaker} <NA> <NA>\n"
rttm_content += rttm_line
# Use SpeechBrain for speaker embedding (optional)
embeddings = speechbrain_model.encode_batch(waveform)
st.success("Speaker embeddings generated successfully")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.error("Error details:")
st.code(traceback.format_exc())
finally:
# Clean up the temporary files
os.unlink(tmp_path)
if 'processed_path' in locals():
os.unlink(processed_path)
with tab2:
if 'diarization' in locals():
st.subheader("Diarization Results")
st.metric("Number of speakers detected", len(diarization.labels()))
with st.expander("RTTM Output"):
st.text_area("RTTM Content", rttm_content, height=300)
st.download_button(
label="Download RTTM file",
data=rttm_content,
file_name="diarization.rttm",
mime="text/plain"
)
with tab3:
if 'diarization' in locals():
if st.button("Visualize Diarization"):
fig, ax = plt.subplots(figsize=(10, 2))
notebook.plot_diarization(diarization, ax=ax)
plt.tight_layout()
st.pyplot(fig)
# Debug Information
with st.expander("Debug Information"):
st.write(f"Working directory: {os.getcwd()}")
st.write(f"Files in working directory: {os.listdir()}")
st.write(f"Python version: {sys.version.split()[0]}")
st.write(f"PyTorch version: {torch.__version__}")
st.write(f"Pyannote Audio version: {pyannote.audio.__version__}")
st.write(f"CUDA available: {torch.cuda.is_available()}")
st.write(f"Device: {'CUDA' if torch.cuda.is_available() else 'CPU'}")
# Token Permissions Instructions
with st.expander("Token Permissions"):
st.markdown("""
If you're encountering access issues, please ensure your Hugging Face token has the following permissions:
1. Go to [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)
2. Find your token or create a new one
3. Ensure "Read" access is granted
4. Check the box for "Access to gated repositories"
5. Save the changes and try again
""")
# Clear Cache Button
if st.button("Clear Cache"):
import shutil
cache_dir = "./model_cache"
if os.path.exists(cache_dir):
shutil.rmtree(cache_dir)
st.success("Cache cleared successfully.")
else:
st.info("No cache directory found.")