Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import random | |
| from typing import Optional | |
| # import spaces #[uncomment to use ZeroGPU] | |
| from diffusers import DiffusionPipeline | |
| from diffusers import ( | |
| DPMSolverMultistepScheduler, | |
| DPMSolverSinglestepScheduler, | |
| KDPM2DiscreteScheduler, | |
| KDPM2AncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| HeunDiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| ) | |
| import torch | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| else: | |
| torch_dtype = torch.float32 | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| # @spaces.GPU #[uncomment to use ZeroGPU] | |
| def infer( | |
| model_id, | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| scheduler: Optional[str] = None, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) | |
| match scheduler: | |
| case None: | |
| pass | |
| case "DPMSolverMultistepScheduler": | |
| if DPMSolverMultistepScheduler in pipe.scheduler.compatibles: | |
| scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
| pipe.scheduler = scheduler | |
| case "DPMSolverSinglestepScheduler": | |
| if DPMSolverSinglestepScheduler in pipe.scheduler.compatibles: | |
| scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config) | |
| pipe.scheduler = scheduler | |
| case "KDPM2DiscreteScheduler": | |
| if KDPM2DiscreteScheduler in pipe.scheduler.compatibles: | |
| scheduler = KDPM2DiscreteScheduler.from_config(pipe.scheduler.config) | |
| pipe.scheduler = scheduler | |
| case "KDPM2AncestralDiscreteScheduler": | |
| if KDPM2AncestralDiscreteScheduler in pipe.scheduler.compatibles: | |
| scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
| pipe.scheduler = scheduler | |
| case "EulerDiscreteScheduler": | |
| if EulerDiscreteScheduler in pipe.scheduler.compatibles: | |
| scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
| pipe.scheduler = scheduler | |
| case "EulerAncestralDiscreteScheduler": | |
| if EulerAncestralDiscreteScheduler in pipe.scheduler.compatibles: | |
| scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
| pipe.scheduler = scheduler | |
| case "HeunDiscreteScheduler": | |
| if HeunDiscreteScheduler in pipe.scheduler.compatibles: | |
| scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config) | |
| pipe.scheduler = scheduler | |
| case "LMSDiscreteScheduler": | |
| if LMSDiscreteScheduler in pipe.scheduler.compatibles: | |
| scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
| pipe.scheduler = scheduler | |
| pipe = pipe.to(device) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| ).images[0] | |
| return image, seed | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(" # Text-to-Image Gradio Template") | |
| model_id = gr.Dropdown( | |
| ["stabilityai/sdxl-turbo", "lightx2v/Qwen-Image-Lightning", "tencent/SRPO", "hakurei/waifu-diffusion"], | |
| label="Image-to-text model", | |
| visible=True, | |
| ) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=True, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| scheduler = gr.Dropdown( | |
| [None, "DPMSolverMultistepScheduler", "DPMSolverSinglestepScheduler", | |
| "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", | |
| "EulerDiscreteScheduler", "EulerAncestralDiscreteScheduler", | |
| "HeunDiscreteScheduler", "LMSDiscreteScheduler",], | |
| label="Scheduler", | |
| visible=True | |
| ) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, # Replace with defaults that work for your model | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, # Replace with defaults that work for your model | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=7.0, # Replace with defaults that work for your model | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=20, # Replace with defaults that work for your model | |
| ) | |
| gr.Examples(examples=examples, inputs=[prompt]) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| model_id, | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| scheduler, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |