bert_mn

This model is a fine-tuned version of tergel/bert_mn on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 256
  • eval_batch_size: 512
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
2.5775 1.0 577 2.5137
2.5628 2.0 1154 2.4950
2.5396 3.0 1731 2.4834
2.5172 4.0 2308 2.4643
2.4969 5.0 2885 2.4481
2.4754 6.0 3462 2.4253
2.4578 7.0 4039 2.4195
2.4403 8.0 4616 2.4009
2.4216 9.0 5193 2.3863
2.4075 10.0 5770 2.3794
2.3927 11.0 6347 2.3640
2.3787 12.0 6924 2.3516
2.365 13.0 7501 2.3403
2.3546 14.0 8078 2.3344
2.3423 15.0 8655 2.3268
2.3336 16.0 9232 2.3171
2.3265 17.0 9809 2.3149
2.3168 18.0 10386 2.3049
2.312 19.0 10963 2.3032
2.3047 20.0 11540 2.2973

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tergel/bert-base-mongolian-uncased

Unable to build the model tree, the base model loops to the model itself. Learn more.