language: en
license: mit
tags:
- precipitation
- convlstm
- multitask-learning
- climate
- vegetation
- amazon
model-index:
- name: MultiTask ConvLSTM w/veg inputs
results:
- task:
type: time-series-forecasting
name: Precipitation Prediction
dataset:
name: ERA5-Land Amazon Basin (2021–2023)
type: reanalysis
metrics:
- type: mean_squared_error
value: 0.28
- type: spearman_correlation
value: 0.87
- type: pearson_correlation
value: 0.79
- type: kendall_tau
value: 0.7
- type: nash_sutcliffe_efficiency
value: 0.62
- type: f1
value: 0.82
- type: accuracy
value: 0.9
- type: precision
value: 0.9
- type: ROC-AUC
value: 0.97
- type: recall
value: 0.75
MultiTask ConvLSTM for Precipitation Prediction
This repository contains two MultiTask ConvLSTM models:
- veg/: Model trained with vegetation input variables
- noveg/: Model trained without vegetation input variables
Both directories include:
convlstm.py: base ConvLSTM layersmodel.py: MultiTask ConvLSTM model definitionexample_inference.py: inference scriptdata/: example.pthfiles (test)
These scripts are provided for reproducibility of the model architecture and workflow. Exact runtime and performance may vary depending on hardware.
Example Data
We provide a large test .pth files
so you can immediately run the inference script without preprocessing.
These files are already preprocessed and normalized from the ECWMF REA5 reanalysis data.
Each .pth file loads as a list of batches:
X_batch: shape(B, T_in, C_in, H*W)y_batch: shape(B, T_out, C_out, H*W)y_zero_batch: shape(B, T_out, C_out, H*W)
with H=81, W=97. Inside evaluate(...), these are reshaped to (B, T, C, H, W).
How to Use
Ensure all files are in the correct directory then run the example_inference.py file.
1 Get the repo
git clone https://huggingface.co//MultiTaskConvLSTM cd MultiTaskConvLSTM
2 Install minimal deps
pip install -r requirements.txt
3 Run inference (choose one variant)
python veg/example_inference.py
or
python noveg/example_inference.py
Citation If you use this model, please cite: > Lilly Horvath-Makkos (2025). [title] [journal] BibTeX:
bibtex @article{horvathmakkos2025, title={Title}, author={Horvath-Makkos, Lilly}, journal={Journal}, year={2025} }