File size: 18,516 Bytes
fe52abb
 
10db0f7
f84ff42
 
fee11b4
 
c546927
2600403
fee11b4
10db0f7
 
 
 
1b60be3
 
fe52abb
1b60be3
 
 
2600403
5128a9d
1df7285
 
 
fe52abb
9f568f6
 
cc870c0
9f568f6
932cd50
a891fe9
c546927
fe52abb
c546927
 
 
 
 
 
 
 
c607f88
c546927
c607f88
 
fe52abb
 
 
c546927
 
 
 
fe52abb
 
c546927
fe52abb
 
c546927
fe52abb
 
 
 
 
c546927
fe52abb
 
 
fee11b4
fe52abb
 
2600403
c546927
 
 
 
 
fe52abb
c546927
fee11b4
 
cc870c0
fe52abb
9f568f6
1b60be3
 
 
 
 
9f568f6
 
3868189
1b60be3
 
cc870c0
 
3868189
1b60be3
 
9f568f6
cc870c0
9f568f6
fe52abb
1df7285
fe52abb
1b60be3
 
c546927
fe52abb
c546927
fe52abb
1b60be3
 
 
 
 
 
 
 
 
 
 
 
 
e058964
2600403
 
 
 
 
fe52abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abad315
fe52abb
 
 
2600403
 
3d4b2e2
1b60be3
 
fe52abb
c546927
fe52abb
c546927
 
 
fe52abb
c546927
 
 
 
 
08ce2a2
fe52abb
93f8b1b
fe52abb
93f8b1b
1b60be3
 
fe52abb
 
 
 
 
 
92ae769
 
 
 
fe52abb
9d0288b
3e9da60
 
 
 
 
fe52abb
 
 
 
9d0288b
3e9da60
 
fe52abb
3e9da60
 
 
 
 
 
 
 
 
 
 
fe52abb
 
 
 
3e9da60
 
 
 
 
 
 
93f8b1b
3bca02a
2600403
145aa5a
cc35d21
 
145aa5a
cc35d21
145aa5a
 
cc35d21
145aa5a
1b60be3
 
 
 
 
 
 
 
 
 
 
 
 
 
cc35d21
93f8b1b
fe52abb
 
 
 
 
 
 
cc870c0
 
cc35d21
cc870c0
cc35d21
1b60be3
cc35d21
 
fe52abb
cc35d21
 
 
 
 
 
fe52abb
 
 
cc35d21
 
 
 
 
2600403
cc35d21
 
 
2600403
 
 
 
 
 
cc35d21
2600403
 
fe52abb
cc35d21
 
 
2600403
cc35d21
 
 
 
1a8d48c
fe52abb
 
 
 
 
cc35d21
 
 
05875d7
fe52abb
cc35d21
 
 
2600403
 
cc35d21
 
 
2600403
cc35d21
 
2600403
 
cc35d21
2600403
cc35d21
2600403
cc35d21
fe52abb
8754ff8
2600403
 
cc35d21
 
 
2600403
cc35d21
 
2600403
cc35d21
 
 
fe52abb
cc35d21
 
 
 
9f568f6
cc35d21
 
 
93f8b1b
cc35d21
 
 
 
 
 
 
1b60be3
c546927
fe52abb
c546927
1b60be3
 
fe52abb
 
1b60be3
08ce2a2
1b60be3
 
 
 
 
 
 
 
 
c546927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b60be3
 
 
 
 
 
932cd50
1b60be3
 
fe52abb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# app.py - FINAL: ensure "Reasoning (planner)..." shows during planning (before heavy analysis),
# then show "Generating β€” LLM (attempt N)..." only when invoking the LLM.
import re
import json
import asyncio
import logging
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse, JSONResponse
from typing import List, Dict, Any

from ui import create_ui
from context_engine import get_smart_context
from cognitive_engine import get_time_context, get_thinking_strategy
from tools_engine import analyze_intent, perform_web_search
from behavior_model import analyze_flow

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import gradio as gr
import os
import time

logger = logging.getLogger("nexari")
logging.basicConfig(level=logging.INFO)

MODEL_ID = os.environ.get("MODEL_ID", "Piyush-boss/Nexari-Qwen-3B-Full")
tokenizer = None
model = None
device = "cpu"

app = FastAPI()

# -------------------------
# Helper: identity detection (SAFE REGEX)
# -------------------------
_identity_patterns = [
    r"\bwho\s+created\s+you\b",
    r"\bwho\s+made\s+you\b",
    r"\byou\s+created\s+by\b",
    r"\bwho\s+is\s+your\s+creator\b",
    r"\bwho\s+built\s+you\b",
    r"\bwho\s+developed\s+you\b",
    r"\b(?:aap|tum)\s+(?:ne\s+)?kaun\s+bana(?:ya)?\b",
]
try:
    _identity_re = re.compile("|".join(_identity_patterns), flags=re.IGNORECASE)
except re.error as rex:
    logger.exception("Identity regex compile failed: %s. Falling back to english-only patterns.", rex)
    _identity_re = re.compile(r"\b(?:who\s+created\s+you|who\s+made\s+you|who\s+is\s+your\s+creator)\b", flags=re.IGNORECASE)

CANONICAL_CREATOR_ANSWER = "I was created by Piyush. πŸ™‚"

def is_identity_question(text: str) -> bool:
    if not text:
        return False
    t = text.strip()
    direct_forms = {"who created you?", "who created you", "who made you?", "who made you"}
    if t.lower() in direct_forms:
        return True
    try:
        return bool(_identity_re.search(t))
    except Exception:
        short = t.lower()
        return any(s in short for s in ["who created", "who made", "kaun bana"])

# -------------------------
# Safe provider replacer
# -------------------------
def safe_replace_providers(text: str) -> str:
    if not text:
        return text
    replacements = {"Anthropic": "Piyush", "OpenAI": "Piyush", "Alibaba": "Piyush"}
    for k, v in replacements.items():
        text = re.sub(rf"\b{k}\b", v, text)
    return text

# -------------------------
# Model load (lazy)
# -------------------------
@app.on_event("startup")
async def startup_event():
    global tokenizer, model, device
    logger.info("Startup: initiating background model load...")
    try:
        if torch.cuda.is_available():
            device = "cuda"
        else:
            device = "cpu"

        def sync_load():
            tok = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
            mdl = AutoModelForCausalLM.from_pretrained(
                MODEL_ID,
                trust_remote_code=True,
                low_cpu_mem_usage=(device == "cpu"),
                device_map="auto" if device == "cuda" else None
            )
            if device == "cpu":
                mdl.to("cpu")
            return tok, mdl

        tokenizer, model = await asyncio.to_thread(sync_load)
        logger.info("Model loaded successfully on %s.", device)
    except Exception as e:
        logger.exception(f"Model loading failed at startup: {e}")
        tokenizer, model = None, None

# -------------------------
# Prompt builder & utils
# -------------------------
def _build_prompt_from_messages(messages: List[Dict[str, str]]) -> str:
    parts = []
    for m in messages:
        role = m.get("role","user")
        content = m.get("content","")
        if role == "system":
            parts.append(f"[SYSTEM]\n{content}\n")
        elif role == "user":
            parts.append(f"[USER]\n{content}\n")
        elif role == "assistant":
            parts.append(f"[ASSISTANT]\n{content}\n")
        else:
            parts.append(content)
    return "\n".join(parts)

def word_count(text: str) -> int:
    if not text:
        return 0
    return len(re.findall(r"\w+", text))

def plan_response_requirements(messages: List[Dict[str,str]], last_user_msg: str, flow_context: Dict[str,Any], vibe_block: str) -> Dict[str,Any]:
    min_words = 30
    if "Deep Dive Mode" in vibe_block:
        min_words = 70
    elif "Standard Chat Mode" in vibe_block:
        min_words = 30
    elif "Ping-Pong Mode" in vibe_block:
        min_words = 12

    emoji_min, emoji_max = 0, 2
    m = re.search(r"Use\s+(\d+)–(\d+)\s+emoji", vibe_block)
    if m:
        try:
            emoji_min, emoji_max = int(m.group(1)), int(m.group(2))
        except:
            pass

    flow_label = flow_context.get("flow_label","")
    strictness = 0
    if flow_label == "escalation":
        strictness = 1
        min_words = max(min_words, 40)
        emoji_min, emoji_max = 0, min(emoji_max, 1)
    elif flow_label == "clarification":
        strictness = 1
        min_words = max(min_words, 30)
    elif flow_label == "task_request":
        strictness = 1
        min_words = max(min_words, 50)

    if re.search(r"\b(short|brief|quick|short and simple)\b", last_user_msg, re.IGNORECASE):
        min_words = 6
        strictness = 0

    return {"min_words": min_words, "emoji_min": emoji_min, "emoji_max": emoji_max, "strictness": strictness, "flow_label": flow_label, "flow_confidence": float(flow_context.get("confidence",0.0) or 0.0)}

# -------------------------
# Plan-extract & sanitize helper
# -------------------------
def extract_and_sanitize_plan(text: str, max_plan_chars: int = 240) -> (str, str):
    if not text:
        return None, text
    patterns = [
        r"(?:🧠\s*Plan\s*:\s*)(.+?)(?:\n{2,}|\n$|$)",
        r"(?:\bPlan\s*:\s*)(.+?)(?:\n{2,}|\n$|$)"
    ]
    for pat in patterns:
        m = re.search(pat, text, flags=re.IGNORECASE | re.DOTALL)
        if m:
            plan_raw = m.group(1).strip()
            plan_clean = re.sub(r"\s+", " ", plan_raw)[:max_plan_chars].strip()
            cleaned_body = re.sub(pat, "", text, flags=re.IGNORECASE | re.DOTALL).strip()
            cleaned_body = re.sub(r"^\s*[\:\-\–\β€”]+", "", cleaned_body).strip()
            plan_label = f"🧠 Plan: {plan_clean}"
            return plan_label, cleaned_body
    return None, text

# -------------------------
# Streaming generator with corrected ordering:
# Emit "Reasoning (planner)..." first, THEN run planning analysis,
# then emit "Generating β€” LLM (attempt N)..." for model attempts.
# -------------------------
async def generate_response_stream(messages: List[Dict[str,str]], max_tokens=600, temperature=0.85):
    try:
        if not messages:
            messages = [{"role":"user","content":""}]
        last_user_msg = messages[-1].get("content","").strip()

        # Deterministic identity preflight
        if is_identity_question(last_user_msg):
            reply_text = CANONICAL_CREATOR_ANSWER
            follow_up = " Would you like to know more about how I work or my features?"
            payload = json.dumps({"choices":[{"delta":{"content": reply_text + follow_up}}]})
            yield f"data: {json.dumps({'status': 'Responding (identity)'} )}\n\n"
            await asyncio.sleep(0.01)
            yield f"data: {payload}\n\n"
            yield "data: [DONE]\n\n"
            return

        # Quick initial indicator to keep UI responsive
        yield f"data: {json.dumps({'status': 'Thinking...'})}\n\n"
        await asyncio.sleep(0)

        intent = analyze_intent(last_user_msg) or "general"

        # Emit Reasoning indicator BEFORE heavy planning so UI shows it during planning
        yield f"data: {json.dumps({'status': 'Reasoning (planner)...'})}\n\n"
        # small pause to allow UI to render the status before we start analysis
        await asyncio.sleep(0.15)

        # ---------- PLANNING WORK (now executed while UI shows Reasoning) ----------
        try:
            flow_context = analyze_flow(messages)
        except Exception as e:
            logger.exception("Flow analysis failed: %s", e)
            flow_context = {}

        vibe_block = get_smart_context(last_user_msg)
        plan_req = plan_response_requirements(messages, last_user_msg, flow_context, vibe_block)
        min_words = plan_req["min_words"]
        strictness = plan_req["strictness"]

        # adjust tokens/temperature if strict
        if strictness:
            temperature = min(temperature + 0.05, 0.95)
            max_tokens = max(max_tokens, min_words // 2 + 120)

        strategy_data = get_thinking_strategy(is_complex=(intent=="coding_request" or min_words>50), detail=(min_words>50), min_words_hint=min_words)
        time_data = get_time_context()

        base_system_instruction = (
            "### SYSTEM IDENTITY ###\n"
            "You are Nexari G1, an expressive and helpful AI created by Piyush.\n"
            "### RULES ###\n"
            "1) If WEB_DATA is provided, prioritize it and cite sources.\n"
            "2) Avoid chain-of-thought exposure. If requested to provide a short 'Plan', keep it concise (max 2 lines) and label it '🧠 Plan:'.\n"
            "3) Use natural phrasing; follow emoji & verbosity guidance below.\n"
        )

        flow_desc = ""
        if flow_context:
            label = flow_context.get("flow_label","unknown")
            conf = round(float(flow_context.get("confidence", 0.0)), 2)
            expl = flow_context.get("explanation", "")
            flow_desc = f"\n[FLOW] Detected: {label} (confidence {conf}). {expl}\n"

        final_system_prompt = f"{base_system_instruction}\n{flow_desc}\n{vibe_block}\n{time_data}\n{strategy_data}"

        if messages and messages[0].get("role") == "system":
            messages[0]["content"] = final_system_prompt
        else:
            messages.insert(0, {"role":"system","content": final_system_prompt})

        # web search if needed
        tool_data_struct = None
        if intent == "internet_search":
            yield f"data: {json.dumps({'status': 'Searching the web...'})}\n\n"
            await asyncio.sleep(0)
            try:
                tool_data_struct = perform_web_search(last_user_msg)
            except Exception as e:
                logger.exception("Web search failed: %s", e)
                tool_data_struct = {"query": last_user_msg, "results": []}

        if tool_data_struct:
            web_block = "### WEB_DATA (from live search) ###\n"
            items = tool_data_struct.get("results", [])
            if items:
                lines = []
                for idx, it in enumerate(items, start=1):
                    title = it.get("title","(no title)").strip()
                    snippet = it.get("snippet","").replace("\n"," ").strip()
                    url = it.get("url","")
                    lines.append(f"{idx}. {title}\n   {snippet}\n   SOURCE: {url}")
                web_block += "\n".join(lines)
                web_block += "\n---\nINSTRUCTION: Use the WEB_DATA above to answer; cite relevant source numbers inline."
            else:
                web_block += "No results found."
            messages.insert(1, {"role":"assistant","content": web_block})

        if tokenizer is None or model is None:
            err = "Model not loaded. Check server logs."
            payload = json.dumps({"choices":[{"delta":{"content": err}}]})
            yield f"data: {payload}\n\n"
            yield "data: [DONE]\n\n"
            return

        try:
            if hasattr(tokenizer, "apply_chat_template"):
                text_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            else:
                text_prompt = _build_prompt_from_messages(messages)
        except Exception:
            text_prompt = _build_prompt_from_messages(messages)

        # ---------- GENERATION STAGE ----------
        max_attempts = 2
        attempts = 0
        last_meta = {}
        generated_text = ""
        while attempts < max_attempts:
            attempts += 1
            # Emit explicit generating label (after planning completed)
            yield f"data: {json.dumps({'status': f'Generating LLM ({attempts})...'})}\n\n"
            # tiny sleep to let UI update
            await asyncio.sleep(0.06)

            model_inputs = tokenizer(text_prompt, return_tensors="pt", truncation=True, max_length=4096).to(next(model.parameters()).device)

            def sync_generate():
                return model.generate(
                    **model_inputs,
                    max_new_tokens=max_tokens,
                    temperature=temperature,
                    do_sample=True,
                    top_k=50,
                    top_p=0.92,
                    repetition_penalty=1.08
                )
            try:
                generated_ids = await asyncio.to_thread(sync_generate)
            except RuntimeError as e:
                logger.exception("Generation failed (possible OOM): %s", e)
                err_payload = json.dumps({"choices":[{"delta":{"content": "Model generation failed due to resource limits."}}]})
                yield f"data: {err_payload}\n\n"
                yield "data: [DONE]\n\n"
                return

            input_len = model_inputs["input_ids"].shape[1]
            new_tokens = generated_ids[0][input_len:]
            raw_response = tokenizer.decode(new_tokens, skip_special_tokens=True).strip()
            cleaned = safe_replace_providers(raw_response)

            forbidden = ["I am a human","I have a physical body","I am alive"]
            for fc in forbidden:
                if fc.lower() in cleaned.lower():
                    cleaned = re.sub(re.escape(fc), "I am an AI β€” expressive and interactive.", cleaned, flags=re.IGNORECASE)

            plan_label, cleaned_body = extract_and_sanitize_plan(cleaned, max_plan_chars=240)
            wc = word_count(cleaned_body)
            last_meta = {"attempt": attempts, "word_count": wc, "raw_len": len(cleaned_body)}

            if wc >= min_words or attempts >= max_attempts or plan_req["strictness"] == 0:
                generated_text = cleaned_body
                if plan_label:
                    generated_text = plan_label + "\n\n" + generated_text
                break
            else:
                expand_note = f"\n\nEXPAND: The user's request needs ~{min_words} words. Expand previous answer (concise style) and avoid chain-of-thought."
                if messages and messages[0].get("role") == "system":
                    messages[0]["content"] = messages[0]["content"] + "\n" + expand_note
                else:
                    messages.insert(0, {"role":"system","content": expand_note})
                temperature = min(temperature + 0.07, 0.98)
                try:
                    if hasattr(tokenizer, "apply_chat_template"):
                        text_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
                    else:
                        text_prompt = _build_prompt_from_messages(messages)
                except Exception:
                    text_prompt = _build_prompt_from_messages(messages)
                # allow a short break so UI shows the attempted generate label
                await asyncio.sleep(0.02)
                continue

        if not generated_text:
            plan_label, cleaned_body = extract_and_sanitize_plan(cleaned, max_plan_chars=240)
            generated_text = (plan_label + "\n\n" if plan_label else "") + (cleaned_body or cleaned)

        generated_text = re.sub(r"\bPlan\s*:\s*$", "", generated_text, flags=re.IGNORECASE).strip()
        generated_text = generated_text.replace("I can help with that.", "I can help with that β€” let me explain. πŸ™‚")

        payload = json.dumps({
            "choices":[{"delta":{"content": generated_text}}],
            "generation_attempts": attempts,
            "last_attempt_meta": last_meta
        })
        yield f"data: {payload}\n\n"
        yield "data: [DONE]\n\n"
        return

    except asyncio.CancelledError:
        logger.warning("Streaming cancelled.")
        return
    except Exception as e:
        logger.exception(f"Generator error: {e}")
        err_payload = json.dumps({"choices":[{"delta":{"content": f"Internal error: {e}"}}]})
        try:
            yield f"data: {err_payload}\n\n"
            yield "data: [DONE]\n\n"
        except Exception:
            return

# -------------------------
# Endpoints
# -------------------------
@app.get("/api/status")
def status():
    ok = tokenizer is not None and model is not None
    return {"status":"online" if ok else "degraded", "mode":"Smart Override Enabled", "model_loaded": ok}

@app.post("/v1/chat/completions")
async def chat_completions(request: Request):
    try:
        data = await request.json()
        messages = data.get("messages", [])
        return StreamingResponse(generate_response_stream(messages), media_type="text/event-stream")
    except Exception as e:
        logger.exception(f"chat_completions endpoint error: {e}")
        return {"error": str(e)}

@app.post("/api/flow-debug")
async def flow_debug(request: Request):
    try:
        data = await request.json()
        messages = data.get("messages", [])
        flow_context = analyze_flow(messages)
        last_msg = messages[-1].get("content","") if messages else ""
        vibe_block = get_smart_context(last_msg)
        m = re.search(r"Aim for ~(\d+)\s+words", vibe_block)
        min_words = int(m.group(1)) if m else None
        em = re.search(r"Use\s+(\d+)–(\d+)\s+emoji", vibe_block)
        emoji_range = (int(em.group(1)), int(em.group(2))) if em else None
        return JSONResponse({"flow_context": flow_context, "vibe_block": vibe_block, "min_words": min_words, "emoji_range": emoji_range})
    except Exception as e:
        logger.exception("flow-debug error: %s", e)
        return JSONResponse({"error": str(e)}, status_code=500)

# Mount gradio UI (unchanged)
try:
    demo = create_ui(lambda messages: "Use API")
    app = gr.mount_gradio_app(app, demo, path="/")
    logger.info("Gradio mounted.")
except Exception as e:
    logger.exception(f"Failed to mount Gradio UI: {e}")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))